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Résumé court
Échantillonnage hors d’équilibre
dans les systèmes vitreux

L’échantillonnage d’une distribution donnée pour un système avec nombreux degrés
de liberté en interaction est une tâche centrale dans plusieurs domains scientifiques.
Le temps de relaxation, c’est-a-dire l’échelle de temps typique sur laquelle la conver-
gence est atteinte, devient extrêmement long dans de nombreux problèmes, allant du
repliement des protéines à l’entraînement des réseaux neuronaux. En physique de la
matière condensée, ce sont les systèmes désordonnés, des verres de spin aux liquides
surrefroidis, qui constituent un défi de choix. Leur temps de relaxation augmente de
plusieurs ordres de grandeur sous l’effet d’un changement modeste de température
ou densité. Les stratégies suivies pour réduire le temps de relaxation reposent sur
l’utilisation de dynamiques non physiques qui échantillonnent la distribution cible tout
en restant réversibles. Une autre possibilité, qui trouve son origines en mathématiques
appliquées, consiste à ajouter à un processus stochastique d’équilibre une force hors
d’équilibre, ce qui peut donner lieu à une diminution du temps de relaxation. Cette
thèse aborde quantitativement les performance des dynamiques irréversibles qui échan-
tillonnent la distribution de Boltzmann dans les systèmes présentant un ralentissement
dynamique vitreux. Dans le chapitre 1, nous décrivons plusieurs façons de s’écarter
de l’équilibre tout en préservant la distribution cible, et nous identifions une implé-
mentation minimale, obtenue en ajoutant à une dynamique de Langevin suramortie
d’équilibre des forces transverses au gradient d’énergie. Dans le chapitre 2, nous étu-
dions la dynamique avec les forces transverses pour une particule évoluant dans un po-
tentiel extérieur. Dans le chapitre 3, nous mettons les forces transverses à l’ouvre dans
un verre de spin en champ moyen, en quantifiant et comprenant l’accélération grâce à
de nouvelles fonctions de corrélation croisées et un théorème de fluctuation-dissipation
modifié. Dans le chapitre 3, nous explorons l’effet de forces transverses dans un liquide
dense par des simulations numériques en 3d. Nous découvrons que l’accélération est
une fonction non monotone de la température Dans la région de dynamique vitreuse,
l’efficacité des forces transverses diminue. Ici, à l’échelle microscopique, les trajectoires
dynamiques caractéristiques des forces transverses se replient sur elles-mêmes en or-
bites circulaires, ce qui est quantifié en mesurant la constante de diffusion impaire,
un coefficient de transport autorisé par les forces transverses. Dans les chapitres 4
et 5, nous rationalisons notre investigation numérique, en développant des théorie de
champ moyen dynamique et de couplage de modes adaptées aux forces transverses.
Nous abordons l’émergence des coefficients de transport (diffusivité, viscosité, mobil-
ité), avec leur composantes impaires, et déterminons le comportement asymptotique
de l’accélération lorsque l’intensité des forces transverses augmente. Dans le chapitre
7, nous évaluons les performances de l’algorithme Event Chain Monte Carlo (ECMC),
une méthode d’échantillonnage hors équilibre qui réalise des translations collectives de
chaînes de particules, dans un verre polydisperse de disques durs. À toutes les den-
sités explorées, ECMC garde un avantage sur l’algorithme d’équilibre de Metropolis.
Comme dans le cas de forces transverses, l’efficacité d’ ECMC diminue à mesure que
la densité augmente. Nous proposons ensuite un nouvel algorithme, collective Swap
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(cSwap), qui réalise des échanges, collectifs et hors d’équilibre, des diamètres de par-
ticules. Il surpasse en efficacité les méthodes Monte Carlo de référence, et son efficacité
augmente avec la densité, tout du moins dans notre fenêtre d’observation. En combi-
nant cSwap et ECMC, nous obtenons une accélération de 40 par rapport aux meilleurs
méthodes. Le nouvel algorithme est appliqué à la production d’empilements de disque
stabiles à des densités élevées. Nous concluons avec un résumé de nos contribution.

Mots-clés: méthodes Monte Carlo, chaines de Markov irreversibles, verres de spin,
théorie de champ moyen dynamique, théorie du couplage de modes, interaction non
réciproques, transition vitreuse, simulations numériques, processus stochastiques.
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Abstract
Irreversible sampling of glassy sys-
tems

In silico sampling of a target distribution for a system of many interacting degrees of
freedom is a ubiquitous task in natural sciences. The relaxation time, the typical time
scale over which convergence is achieved, becomes dauntingly large in some relevant
problems, ranging from protein folding to neural networks training . The hardest in-
stance of this problem in condensed matter is presented by disordered systems, from
spin glasses to supercooled liquids, whose relaxation time grows by many orders of
magnitude upon a mild change in temperature or density. The way-to-go paradigm to
reduce the relaxation time relies on designing alternative, nonphysical dynamical evo-
lution rules that sample the target distribution, which is achieved by preserving time
reversibility. Another route, which has its birthplace in applied mathematics, con-
sists in supplementing with a nonequilibrium drive an otherwise equilibrium stochastic
process, which can be rewarded with a reduction of the relaxation time. This the-
sis addresses the quantitative performance of irreversible dynamics that sample the
Boltzmann distribution in different models and system displaying glassy dynamical
slowdown. In Chapter 1 we describe different ways by which the dynamics can be
driven out of equilibrium while preserving the target distribution, and we identify a
minimal implementation of the nonequilibrium drive, achieved by supplementing an
equilibrium overdamped Langevin dynamics with forces transverse to the energy gra-
dient. In Chapter 2 we move to the dynamics of transverse forces for a single particle
evolving in an external potential. In Chapter 3, we study the dynamics of a mean
field spin glass with transverse forces. We quantify and physically understand the
speedup by means of novel cross correlation function and of a modified fluctuation
dissipation theorem. In Chapter 4 we bring transverse forces to work in dense liquids
through numerical simulations in finite dimensions. We discover that the speedup is a
nonmonotonus function of the temperature and that, as we enter the region of glassy
dynamics, the efficiency of transverse forces decreases. Microscopically, we find that
in this region the dynamical pathways unlocked by transverse forces fold themselves
in circular orbits. We characterize these trajectories by measuring the odd diffusion
constant, a transport coefficient now permitted by transverse forces. In Chapter 5 and
6 we rationalize our numerical investigation, developing a dynamical mean field theory
and a mode coupling theory specifically tailored for transverse forces. We address the
emergence of several transport coefficients (diffusivity, viscosity, mobility), with a focus
on their odd components, and determine the asymptotic behavior of the speedup as
transverse forces are made increasingly strong. In Chapter 7, we probe the performance
of the Event-Chain Monte Carlo algorithm, a nonequilibrium sampling method that
performs driven, collective translations of chains of particles, in a polydisperse glass
former of hard disks. At all densities explored, ECMC maintains an edge over the
equilibrium Metropolis algorithm. Echoing what we found for transverse forces, the
efficiency of ECMC decreases as the density of the system increases. We then propose a
novel algorithm, collective Swap (cSwap), which performs out of equilibrium, collective
swaps of particle diameters. We show that it outperforms state-of-the art Mote Carlo
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algorithms, and that its efficiency increases with the density within our observation
window. By combining cSwap and ECMC, we achieve a speedup of 40 over state of
the art methods. As an application, we use the novel algorithm to produce stable
jammed packings at remarkably high densities. In the conclusions, we summarize the
contributions developed in the previous chapter, and propose future research directions.

Keywords: Monte Carlo methods, irreversible Markov chains, spin glasses, dynam-
ical mean field theory, mode coupling theory, Non- reciprocal interactions, Glass tran-
sition, Numerical simulations, stochastic processes.
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Résumé

L’ échantillonnage d’une distribution donnée pour un système avec de nombreux de-
grés de liberté en interaction est une tâche centrale dans plusieurs sciences naturelles et
en mathématiques. Les domaines concernés incluent la biochimie, la matière conden-
sée, les problèmes d’optimisation et d’inférence, et la physique des hautes énergies. Le
paradigme pour accomplir cette tâche d’échantillonnage consiste à simuler un processus
stochastique qui est réversible dans le temps. Cette propriété garantit que la distribu-
tion cible est échantillonnée une fois que la dynamique a atteint son état d’équilibre. La
convergence vers l’état stationnaire est atteinte sur une échelle de temps typique con-
nue sous le nom de temps de relaxation. Le temps de relaxation devient extrêmement
long dans nombreux problèmes de physique ou autres. Quelques exemples incluent le
repliement des protéines, où les structures protéiques stables et biologiquement per-
tinentes sont séparées par de grandes barrières énergétiques, ou dans l’apprentissage
automatique, où les paramètres optimaux nécessaires pour que le réseau neuronal exé-
cute correctement une tâche donnée doivent être identifiés dans un paysage complexe
en haute dimension.

L’instance la plus difficile du problème d’ échantillonnage en matière condensée est
présentée par les systèmes désordonnés, des verres de spin aux liquides surfondus, qui
consituent un défi de choix. Pour ces systèmes, le temps de relaxation augmente de
plusieurs ordres de grandeur lors d’un léger changement de température ou de densité.
L’ origine de ce ralentissement brutal échappe encore à notre compréhension, ainsi que
la nature du lien entre la dynamique des systèmes vitreux et leurs propriétés thermody-
namiques, déterminées par la distribution de Boltzmann. Sonder la thermodynamique
de ces systèmes en profondeur dans le régime vitreux est nécessaire pour étendre notre
compréhension de leurs propriétés. C’est également un défi en soi, qui pourrait mener
à des découvertes et des applications dans les autres domaines mentionnés où un ralen-
tissement similaire est observé.

Pour réduire le temps de relaxation, une possibilité est de recourir à des dy-
namiques non physiques dotées d’une propriété de réversibilité temporelle, qui leur
permet d’échantillonner la distribution de Boltzmann à l’état stationnaire. Un exem-
ple célèbre de cette approche est un algorithme pour les verres structurels polydisperses,
connu sous le nom de Swap. En permettant des échanges à l’équilibre des diamètres
des particules, Swap atteint une accélération de plusieurs ordres de grandeur. D’autres
exemples incluent les cluster algorithm, population annealing et parallel tempering.

Une autre possibilité, qui trouve sa source dans les mathématiques appliquées, con-
siste à ajouter à un processus stochastique d’équilibre une force hors équilibre. Un
théorème stipule que recourir à une dynamique hors équilibre peut être récompensé
par une réduction du temps de relaxation. De nombreuses dynamiques hors équilibre
existent, et ont fait l’objet d’études approfondies en mathématiques appliquées et, plus
récemment ont trouvé des applications en physique dans les systèmes ferromagnétiques
et dans l’étude de la fusion en deux dimensions. Cependant, nous conaissons peu la per-
formance de ces méthodes dans les systèmes présentant un ralentissement dynamique
vitreux, notamment en ce qui concerne la dépendance de l’accélération avec la tem-
pérature et la densité du système et le type d’interactions entre les constituants du
système. Cette thèse vise à combler cette lacune en abordant la performance quantita-
tive des dynamiques irréversibles qui échantillonnent la distribution de Boltzmann dans
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différents modèles et systèmes dont la dynamique est entravée par un ralentissement
vitreux.

Dans le Chapitre 1, nous introduisons le paradigme de l’échantillonnage d’équilibre
et le concept de temps de relaxation. Nous décrivons différentes manières de s’écarter
de l’équilibre tout en préservant la distribution cible. Une possibilité, connue sous le
nom de lifting, consiste à augmenter l’espace de phase du système par des variables
auxiliaires, puis à exploiter la nature étendue de l’espace de phase pour injecter une
impulsion hors équilibre, ajoutant une forme de persistance aux trajectoires du système.
Nous présentons différents types de dynamiques augmentées, en nous inspirant des
modèles de matière active. Une seconde possibilité consiste à ajouter à une dynamique
de Langevin suramortie d’équilibre des forces transverses au gradient de l’énergie. Nous
identifions cette dynamique avec forces transverses comme une mise en œuvre minimale
des forces hors équilibre.

Dans le Chapitre 2, nous construisons une image physique de la manière dont
les forces transverses opèrent en examinant différents exemples de particules dans
un potentiel externe. Les forces transverses augmentent le taux d’échappement, une
fréquence d’évolution microscopique typique. Ensuite, nous examinons les cas d’une
particule dans un puits harmonique et du problème de franchissement de barrière, où
nous quantifions l’accélération de l’échantillonnage et discutons de la manière dont les
trajectoires sont modifiées en présence de forces transverses. Fait intéressant, les ré-
sultats sur l’accélération sont différents de ceux que l’on aurait pu deviner à partir de
l’analyse naïve du taux d’évasion. Nous concluons en discutant de la manière dont le
théorème de fluctuation-dissipation est violé par les forces transverses.

Dans le Chapitre 3, nous mettons les forces transverses à l’épreuve dans le modèle
du p-spin sphérique, un verre de spin en champ moyen avec un paysage énergétique
accidenté. Nous dérivons des équations dynamiques pour les fonctions de corrélation et
de réponse du système, qui sont ensuite étudiées par intégration numérique directe et
analytiquement, à travers une forme de relation äccidentelled̈e fluctuation-dissipation.
Nous constatons que, comme pour les dynamiques d’équilibre, il existe une température
en dessous de laquelle la dynamique du système est arrêtée et l’ergodicité est brisée.
Cette température n’est pas modifiée par les forces transverses : elle est la même qu’à
l’équilibre. Dans la région ergodique, nous quantifions l’accélération fournie par les
forces transverses et l’interprétons en termes de l’évolution de nouvelles fonctions de
corrélation absentes dans le cas d’équilibre.

Dans le Chapitre 4, nous mettons les forces transverses á l’œuvre dans un modèle
trés utilisé des verres structurel, le mélange binaire de Kob-Andersen. Nous implémen-
tons numériquement une dynamique brownienne suramortie avec des forces transverses
et mesurons l’augmentation de la constante de diffusion longitudinale produite, comme
un indicateur de la réduction du temps de relaxation du système. Nous constatons que
les forces transverses maintiennent un avantage sur les dynamiques d’équilibre et que,
de façon surprenant, l’accélération de l’échantillonnage est une fonction non monotone
de la température, diminuant à mesure que le système devient plus vitreux. Nous car-
actérisons les trajectoires dynamiques générées par les forces transverses en étudiant la
diffusivité impaire du système, un coefficient de transport dont l’existence est rendue
possible par la nature hors équilibre des forces transverses. Le comportement des con-
stantes de diffusion longitudinale et impaire dans le régime vitreux étayes l’image des
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particules étant entraînées dans un mouvement tourbillonnant à l’intérieur de la cage
formée par leurs voisins locaux.

Dans les Chapitres 5 et 6, nous rationalisons nos résultats numériques, en dévelop-
pant une théorie dynamique de champ moyen et une théorie du couplage de modes
spécifiquement adaptées aux forces transverses. Dans le Chapitre 5, nous abordons
l’efficacité des forces transverses dans un liquide simple en dimension infinie, où le
désordre n’est pas figé, comme pour les verres de spin, mais auto-induit par la struc-
ture amorphe du système. La limite de champ moyen est atteinte en envoyant la
dimension de l’espace à l’infini, tout en redimensionnant correctement la densité. Nous
développons une théorie dynamique en champ moyen pour les forces transverses. Nous
quantifions l’accélération en termes du coefficient de diffusion du système, en partic-
ulier à proximité de la transition vitreuse, où la dynamique s’arrête. Nous dévoilons
également la présence de coefficients de transport impairs (diffusivité impaire, vis-
cosité impaire et mobilité impaire) et étudions leur comportement proche de l’arrêt
dynamique. Notre analyse éclaire la nature des trajectoire dynamiques suivies par
le liquide et comment elles évoluent à mesure que nous approchons la phase à er-
godicité brisée. Dans les chapitre 6, nous nous efforçons de comprendre analytique-
ment comment les forces transverses opèrent en dimensions finies. Nous étendons deux
schémas d’approximation, la théorie du couplage faible et la théorie du couplage de
modes, à la dynamique des liquides avec des forces transverses. Le premier schéma
d’approximation est valide pour le cas où les interactions sont faibles par rapport aux
fluctuations thermiques et prévoit que l’efficacité des forces transverses augmente à
mesure que la température diminue. Le second schéma d’approximation prévoit un ar-
rêt dynamique en dessous d’une température de transition dynamique TMCT. Comme
pour le scénario de champ moyen, nous trouvons que TMCT est le même que pour les
dynamiques d’équilibre. Dans la phase ergodique et en approchant de la transition,
nous trouvons que le gain fourni par les forces transverses est une fonction décroissante
de la température. Notre analyse nous permet également de calculer de nombreux
autres coefficients de transport, avec un accent particulier sur la diffusivité impaire, la
mobilité impaire et la viscosité impaire. Ces résultats corroborent et rationalisent le
comportement des liquides denses avec des forces transverses observés numériquement
au Chapitre 4. Nous concluons en analysant la théorie du couplage de modes pour un
modèle de lifted active Brownian particles, introduit dans le Chapitre 1. Nous trou-
vons des résultats similaires à ceux obtenus pour les forces transverses, suggérant que
la tendance de l’efficacité observée pour ce modèle minimal pourrait également tenir
pour d’autres échantillonneurs irréversibles.

Dans le Chapitre 7, nous étudions le célèbre algorithme Event Chain Monte Carlo
(ECMC), un schéma de Monte Carlo hors équilibre qui exploite l’idée de lifting pour
effectuer des translations collectives entraînées de chaînes de particules, dans un modèle
de disques durs polydisperses. Comme observé pour les forces transverses, l’efficacité de
l’ECMC par rapport à l’algorithme standard de Metropolis diminue avec l’augmentation
de la nature vitreuse du système. Cependant, les mouvements collectifs et entraînés
caractéristiques de l’ECMC n’ont pas de raison de se limiter aux seules translations de
particules, car en principe, d’autres degrés de liberté peuvent également ressentir une
force hors équilibre. Un candidat naturel sont les diamètres mis en mouvement par
l’algorithme Swap. Nous proposons un algorithme qui effectue des échanges collectifs
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entraînés dans des systèmes de disques durs polydisperses continus, en exportant les
idées de chaîne d’événements dans l’espace des diamètres des particules. À mesure que
la nature vitreuse du système augmente, l’efficacité de notre algorithme par rapport à
Swap augmente également. En combinant notre nouvel algorithme avec ECMC pour
les translations de particules, nous réalisons une accélération d’environ 40 par rapport
à l’état de l’art Swap. Comme application, nous montrons que notre algorithme peut
être utilisé pour produire des empilements très denses de disques.

Enfin, dans les conclusions, nous résumons les contributions développées dans les
chapitres précédents et proposons des directions de recherche futures.
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Introduction

The main goal of statistical mechanics is to understand the macroscopic properties of
systems composed of an extremely large number of constituents, starting from their
microscopic interactions. When the microscopic dynamics is reversible in time and the
system exchanges heat with an external reservoir, the macroscopic properties can be
obtained as averages over all the microscopic configurations of the system, weighted
according to the Boltzmann distribution [59].

How can these averages be computed in practice? For the majority of strongly
interacting realistic systems, the analytical evaluation of these ensemble averages is
done by resorting to approximation schemes, as is the case for dense liquids [124].
The high number of degrees of freedom involved makes any exact numerical, or let
alone, analytical integration unfeasible. To escape the curse of dimensionality, the
way-to-go paradigm consists in simulating a stochastic dynamics for the system of in-
terest [202, 6, 97], in the spirit of the pioneering work on the Monte Carlo algorithm by
Ulam, Metropolis and Rosenbluth [189, 188, 231], or of Molecular Dynamics by Alder
and Wainwright [5], or of Brownian dynamics by Turq, Lantelme and Friedman [249].
These algorithms allow the system to explore its configuration space using a stochas-
tic process, where thermal fluctuations are combined with energy minimization flows.
The dynamical evolution rules are tailored to be statistically reversible in the steady
state with respect to the Boltzmann distribution. This condition ensures that, after a
large enough relaxation time, the configurations explored by the simulated system are
distributed according to the Boltzmann distribution.

There are however systems of physical interest characterized by an extremely rugged
energy landscape, full of local minima and saddle points where the dynamics can get
stuck for long times, rendering sampling a very difficult task in practice. The com-
putational challenges of sampling the Boltzmann distribution in systems of this sort
extend well beyond the realm of physics. Similar difficulties arise for instance in bio-
chemistry, when determining the stable, functional structure of proteins [196, 58]. In
this case, biologically relevant configurations are separated by high energy barriers, and
using local dynamics, the transitions from one configuration to another are extremely
rare. Another interesting field of application is constraint satisfaction problems [168,
95] and machine learning [8]. There, configurations are the internal weights of the
neural network, and the loss function, a measure of the performance of the network in
accomplishing a given feature-extraction task, plays the role of the energy of the config-
urations. Training a neural network involves performing a stochastic dynamics in the
loss landscape [45], which is reminiscent, with some caveats [54, 195], of the dynamics
discussed above for physical systems, with the common trait that the high-dimensional
loss landscape is often non-convex.

In condensed matter physics, a manifestation of this hard-to-sample, rugged land-
scape is given by systems where some form of disorder is present. The disorder can
be directly quenched in the interactions, as is the case for magnetic alloys known as
spin-glasses [191], or it can be self-induced, as for structural glasses and amorphous

1
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(a) (b) (c)

Figure 1: Sampling a target distribution is a hard problem in some relevant fields such as
(a) biochemistry, (b) optimization problems and machine learning, and (c) amorphous and
disordered materials. The images are adapted respectively from [82, 7, 26].

materials [26]. For these systems, as the temperature is lowered or the density increased
beyond a typical threshold, the dynamics slows down by several orders of magnitude,
and the particles that constitute these materials are effectively frozen, as in crystalline
solids. However, on a structural level, the difference from the rapidly relaxing, liquid
configurations are hard to identify. As the interplay between their structure and the
slow dynamics of glasses continues to elude our understanding [10, 57, 60, 26, 28, 42],
the development of algorithms capable of exploring more efficiently glassy landscapes
plays a crucial role in the development and falsification of the theories of the glass
transition [16, 37].

When fighting against the computationally growing timescales of glassy systems,
it is a common practice to design and simulate unphysical dynamics, that reduce the
time necessary to reach equilibration while preserving the target Boltzmann distri-
bution. The latter condition can be ensured by tuning the transition rates of the
dynamical process so that the stochastic dynamics is time reversible. This property,
called equilibrium, or detailed balance, ensures the eventual sampling of the Boltzmann
distribution. Examples of these dynamics are given by cluster algorithms for spins [242,
257] or particle systems [144, 83], where many components of the system are collec-
tively updated, or by parallel tempering [133], where many copies of the system are
simulated at different temperatures and interact with each other through configuration
swaps. Recently, an efficient algorithm for polydisperse systems was developed. This
so-called Swap algorithm achieves a remarkable speedup of several orders of magnitude
by allowing for the exchange of radii of particles of different species [119, 203].

Another direction in the design of novel algorithms was pursued in the field of
applied mathematics, and diffused gradually over the last 15 years into the field of sta-
tistical physics. The seminal idea is that imposing an equilibrium reversible dynamics is
a sufficient, but not necessary, condition to grant the correct sampling of the Boltzmann
distribution. One can thus design dynamics that are out-of-equilibrium, or irreversible,
but that nevertheless sample the Boltzmann distribution in their steady state. A math-
ematical theorem [135, 134, 136] states (in spirit) that, when an equilibrium dynamics
is supplemented by a nonequilibrium driving that preserves the Boltzmann distribu-
tion, the relaxation time to the steady state is shortened compared to the equilibrium
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Figure 2: In a liquid (a) particle diffuse rapidly, while in a glass (b), their dynamics is
extremely slow. The Fourier transform of density-density correlation yields mild changes
upon increasing the density (c), but on the other hand the corresponding time correlation
develops a plateau that spans many orders of magnitude (d). Taken from [142]:

case. These out of equilibrium drives can be provided by supplementing the dynam-
ics with forces transverse to the energy gradient. Another way of implementing the
nonequilibrium drive is given by the so called lifted dynamics [255]. In these dynamics,
the original degrees of freedom of a given system are supplemented by an extra set of
variables, and an out of equilibrium dynamics for the extended system is designed ex-
ploiting the extended structure of the configuration space. As shown in seminal works
in the field of applied mathematics [81, 63], this procedure usually transform diffusive
processes in ballistic ones, leaving room for a speedup in sampling. In the realm of
physics, these ideas have been applied successfully for ferromagnetic systems close to
a second-order phase transitions [248, 233, 199] and hard and soft disks [23, 22, 193]
in the vicinity of the melting point, and various other directions [194, 140, 148, 182,
121]. Applications of these ideas are found also in the domain of Bayesian inference,
where these dynamics go under the mathematical framework of piecewise deterministic
Markov Processes [72, 198], and in machine learning [207, 106, 104]. Classical lifted
dynamics have also been shown to be equivalent to class of quantum algorithms known
as quantum walks [251, 11].

The physical systems where these irreversible dynamics have been applied exhibit
a critical dynamical slowdown, which is by nature very different from the one ob-
served for disordered and amorphous systems. How do these irreversible samplers of
the Boltzmann distribution fare in glassy system? How big is the speedup, and how
does it depends on the temperature and density of the system? Can these ideas on
irreversibility be combined with state-of-the art, equilibrium algorithms, and help us
advance in the "race to the bottom" [232] of the energy landscapes of disordered sys-
tems? These are the questions that this thesis addresses.
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Figure 3: Examples of unphysical dynamical rules that sample the Boltzmann distribution
and obey detailed balance: (a) Wolff cluster algorithm for spin systems (b) parallel tempering,
(c) Dress-Krauth cluster algorithm for particle systems, (d) Swap Monte Carlo. The image
is taken from [37].

Outline

This thesis is organised as follows: in Chapter 1 we describe different ways by which
the dynamics can be driven out of equilibrium while preserving the target distribution,
and we identify a minimal implementation of the nonequilibrium drive, achieved by
supplementing an equilibrium overdamped Langevin dynamics with forces transverse
to the energy gradient. In Chapter 2 we move to the dynamics of transverse forces
for a single particle evolving in an external potential. In Chapter 3, which contains
results from [112], we study the dynamics of a mean field spin glass with transverse
forces. We quantify and physically understand the speedup by means of novel cross

(a)

−∇V

f

v

(b) (c)

Figure 4: Examples of out-of-equilibrium dynamics that sample the Boltzmann distribution
in the steady state: (a) Dynamics where the gradient part of the energy−∇V is supplemented
by forces f transverse to the energy gradient. (b) Lifted dynamics, where an additional set of
degrees of freedom v drives the dynamics out of equilibrium, (c) Event-Chain Monte Carlo,
adapted from [149], is a kind of lifted dynamics where directed, collective displacement of
chains of particles are performed.
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correlation function and of a modified fluctuation dissipation theorem. In Chapter 4,
based on [108] we bring transverse forces to work in dense liquids through numerical
simulations in finite dimensions. We discover that the speedup is a nonmonotonous
function of the temperature and that, as we enter the region of glassy dynamics, the
efficiency of transverse forces decreases. Microscopically, we find that in this region the
dynamical pathways unlocked by transverse forces fold themselves in circular orbits.
We characterize these trajectories by measuring the odd diffusion constant, a transport
coefficient now permitted by transverse forces. In Chapter 5 and 6, based on [109, 107]
we rationalize our numerical investigation, developing a dynamical mean field theory
and a mode coupling theory specifically tailored for transverse forces. We address the
emergence of several transport coefficients (diffusivity, viscosity, mobility), with a focus
on their odd components, and determine the asymptotic behavior of the speedup as
transverse forces are made increasingly strong. In Chapter 7, based on [110], we probe
the performance of the Event-Chain Monte Carlo algorithm, a nonequilibrium sam-
pling method that performs driven, collective translations of chains of particles, in a
polydisperse glass former of hard disks. At all densities explored, ECMC maintains an
edge over the equilibrium Metropolis algorithm. Echoing what we found for transverse
forces, the efficiency of ECMC decreases as the density of the system increases. We
then propose a novel algorithm, collective Swap (cSwap), which performs out of equilib-
rium, collective swaps of particle diameters. We show that it outperforms state-of-the
art Mote Carlo algorithms, and that its efficiency increases with the density within
our observation window. By combining cSwap and ECMC, we achieve a speedup of
40 over state of the art methods. As an application, we use the novel algorithm to
produce stable jammed packings at remarkably high densities. In the conclusions, we
summarize the contributions developed in the previous chapter, and propose future
research directions.
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Sampling Boltzmann, faster

In the long run we are all dead

– J. M. KEYNES, A tract on
monetary reform

1.1 Equilibrium sampling of the Boltzmann distribution . . . . . . 8
1.1.1 Equilibrium dynamics and time reversibility . . . . . . 9

1.2 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Nonequilibrium to the rescue . . . . . . . . . . . . . . . . . . . 12

1.3.1 Transverse forces . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Lifted Markov processes . . . . . . . . . . . . . . . . . 15

1.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . 17

In this introductory chapter, we illustrate the paradigm of equilibrium sampling by
means of an overdamped Langevin equation. We recall a widely accepted definition of
time reversibility for stochastic dynamics, and we introduce a timescale that governs the
convergence to the equilibrium state. We then observe that giving up time reversibility
while preserving the Boltzmann distribution in the stationary state can be rewarded
with a larger convergence rate, and we present several formulations of irreversible
dynamics that sample the Boltzmann distribution. These examples take inspiration in
their design from models of active particles, and they will be used to justify the main
purpose of study for this part of the thesis: a dynamics that achieves a speedup by
including forces transverse to the local energy gradient.
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1.1 Equilibrium sampling of the Boltzmann distribution

We start by defining our general goal. Given a system with d real and continuous
degrees of freedom encoded in a vector r, and given an energy V (r) associated to these
degree of freedom, the goal is to produce independent configurations of r distributed
according to the Boltzmann distribution

ρB(r) = 1
Z
e−βV (r) (1.1)

with β−1 = kBT , with T the temperature of the system and kB the Boltzmann constant,
which we set to 1 in the rest of this thesis. The normalization factor is the partition
function Z ≡

∫
dre−βV (r). In this first part of the thesis, we address this question from

a theoretical standpoint, while pinpointing elements important for practical realiza-
tions. The way-to-go paradigm to tackle this problem is to endow the system with
an equilibrium, stochastic, local dynamics. To illustrate this paradigm, consider the
following overdamped Langevin dynamics

ṙ = −µ0∇V (r) +
√

2Tµ0ξ(t). (1.2)

The mobility µ0 sets the time-scale at which the particle is moving. The two terms on
the right hand side of Eq. (1.2) play complementary roles. The first one is deterministic
and drives the system toward near local minima of the energy. The second one involves
a Gaussian white noise ξ(t), with correlations ⟨ξ(t) ⊗ ξ(t′)⟩ = 1δ(t − t′). It helps
exploring the energy landscape by eventually kicking the particle out of saddle points
and minima, where the gradient term is zero. The time derivative of the energy, upon
averaging over the noise, is〈

d
dtV (r(t))

〉
= −µ0⟨[∇V (r(t))]2 − T∇2V (r)⟩ (1.3)

And is negative if V (r) is convex. The stochastic dynamics given in Eq. (1.2) comes
with an associated probability density distribution ρ(r, t), such that ρ(r, t)dr is the
probability of finding the particle in a infinitesimal phase space volume dr centered
around r at time t, and it evolves in time according to the Fokker-Planck equation

∂tρ(r, t) = Ω0ρ(r, t), (1.4)

where Ω0 is a linear operator

Ω0 = µ0∇ · [(∇V ) + T∇] . (1.5)

We are adopting the convention that the gradient ∇ acts on anything to its right,
unless it is enclosed by round parentheses. The Fokker-Planck operator in Eq. (1.5) is
composed of a drift term and of a diffusive term, which are signatures, at the level of
the dynamics of ρ(r, t), of gradient descent flow and of thermal fluctuations.

Due to conservation of probability
∫

drρ(r, t) = 1, the Fokker-Planck equation
Eq. (1.4) can be written in the form of a continuity equation

∂tρ(r, t) = −∇ · j(r, t). (1.6)

8
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Where the probability current j(r, t) depends on ρ and reads

j(r, t) = −µ0 [∇V + T∇] ρ(r, t). (1.7)

The stationary solution of Eq. (1.4) is the Boltzmann distribution defined in Eq. (1.1),
since

∂tρB(r, t) = Ω0ρB = 0. (1.8)
Equivalently, we can note that j(r, t) in the continuity equation Eq. (1.7) vanishes when
evaluated for ρ = ρB. The task of sampling Boltzmann is thus accomplished once the
stochastic process defined by Eq. (1.2) reaches the steady state. The question of the
time taken to reach this condition is addressed in the next Section. Before turning to
this issue, however, we will discuss the equilibrium nature of the overdamped Langevin
process.

1.1.1 Equilibrium dynamics and time reversibility

In physics, the concept of time reversal symmetry has its origin in the deterministic
Newton second law, which is invariant upon inversion of time. In statistical mechan-
ics, where deterministic forces are combined with random fluctuations, time reversal
symmetry is the hallmark of thermal equilibrium. A stochastic dynamics, such as the
overdamped Langevin dynamics presented in Eq. (1.2), is an equilibrium dynamics –i.e.
it is invariant under time reversal symmetry– if, in the stationary state, the probabil-
ity P({r(τ)}, 0 ≤ τ ≤ t|r(0)) of observing a given trajectory {r(τ)} which starts at
t = 0 at r(0) and ends at r(t) at a final observation time t, is the same of observing
its time-reversed counterpart {rR(τ) ≡ r(t − τ)}. Taking the sampling of the steady
state distribution ρss(r) into account for the position of the particle at the beginning
of a trajectory, the equilibrium condition reads

P({r(τ)}, 0 ≤ τ ≤ t|r(0))ρss(r(0)) = P({rR(τ), 0 ≤ τ ≤ t}|r(t))ρss(r(t)). (1.9)

Eq. (1.9) is also known under the name of detailed balance condition. The probability
of a given trajectory can be computed using a path integral approach, such as the
Onsager-Machlup formalism [209, 180] for Gaussian noise. The result reads

P({r(τ)}, 0 ≤ τ ≤ t|r(0)) ∝ e−S[{r(τ)}]. (1.10)

Here S[{r(t)}] is the Onsager-Machlup action associated to the dynamics under con-
sideration. For the overdamped Langevin dynamics in Eq. (1.2) in the Stratonovich
discretization, it is given by

S({r(τ)}) = 1
4Tµ0

∫ t

0
dτ [ṙ(t) + µ0∇V (r(t))]2 + 1

2µ0

∫ t

0
dτ∇2V (r(t)). (1.11)

Using Eq. (1.11), the path probability ratio is

P({r(τ)}, 0 ≤ τ ≤ t)|r(0)
P({rR(τ)}, 0 ≤ τ ≤ t)|r(t) = e−β[V (r(t))−V (r(0))] = ρB(r(t))

ρB(r(0)) . (1.12)

9
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which proves the detailed balance equation Eq. (1.9) with respect to the Boltzmann
distribution ρB, for the overdamped Langevin dynamics.

The violation of the time reversal symmetry condition given by Eq. (1.9) signals the
nonequilibrium nature of the dynamics. When this occurs, it is interesting to access
to the typical rate at which the irreversible nature of the process manifests itself. This
inverse time scale is given by the entropy production rate σ [237, 214], defined as

σ ≡ lim
t→∞

1
t

∫
d{r(τ)}ρss(r(0))e−S[r(τ)] log ρss(r(0))P({r(τ)}, 0 ≤ t ≤ τ |r(0))

ρss(r(t)P({rR(τ)}, 0 ≤ t ≤ τ |r(t)) (1.13)

where the integral
∫

d{r(τ)} signifies a sum over all the possible trajectories {r(t)}.
On a mathematical ground, σ is the growth rate of the Kullback-Leibler divergence
between the probabilities of observing a trajectory and its time-reversed counterpart
in the steady state. For systems obeying Eq. (1.9), we consistently have σ = 0. The
entropy production rate can be related with the presence of a non-vanishing current in
the steady state of the system, as the following equality

σ = 1
µ0T

∫
dr j2

ss(r)
ρss(r) ≥ 0 (1.14)

holds. A consequence of having a nonequilibrium dynamics is the presence of a nonzero,
divergence-free probability current in the steady state.

After discussing the signatures of equilibrium and nonequilibrium stochastic dy-
namics in their steady state, let us look at the times scale necessary to enter the steady
state.

1.2 Relaxation time

How much time does it take for the overdamped Langevin dynamics to reach its termi-
nal, equilibrium state? To answer this question, we introduce a bra and ket notation
from quantum mechanics. The Fokker Planck equation Eq. (1.4) can be written in the
form

∂t |ρ(t)⟩ = Ω0 |ρ(t)⟩ (1.15)
The distribution in real space is obtained via the projection

ρ(r, t) = ⟨r|ρ(t)⟩. (1.16)

Since Eq. (1.15) is linear, we can write |ρ(t)⟩ as a linear combination of exponentially
decaying terms

|ρ(t)⟩ =
+∞∑
n=0
⟨Ln|ρ(0)⟩ e−λnt |Rn(t)⟩ (1.17)

The vector |Rn⟩ and |Ln⟩ are the left and right eigenvectors associated to Ω0:

Ω0 |Rn⟩ = λn |Rn⟩
⟨Ln|Ω0 = λn ⟨Ln| .

(1.18)
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The spectrum λn and its properties can be determined by transforming the operator
Ω0 into a Hermitian operator W0

W0 ≡ −ρB(r)− 1
2 Ω0ρ

1
2
B (r) = µ0

T

[
−T∇ + 1

2(∇V )
]
· [T∇ + 1

2(∇V )]. (1.19)

and rotating the vectors |Rn⟩ to a new basis: |Ψn⟩ = ρ
− 1

2
B |Rn⟩. The eigenvalue problem

given in Eq. (1.18) thus becomes

W0 |Ψn⟩ = λn |Ψn⟩ (1.20)

Since W0 is Hermitian, its spectrum {λn} is real. Moreover, one can write W0 = w ·w†,
with w ≡

√
µ0
T

[T∇ + 1
2(∇V )], and thus its spectrum is positive-definite, λn ≥ 0.

If the potential V is confining enough and it has no basin of attraction enclosed by
infinitely high energy barriers, the stationary solution is unique, and is thus given by
the Boltzmann distribution, |R0⟩ = |ρB⟩, with λ0 = 0. Upon arranging the eigenvalues
according to their increasing value, 0 < λ1 ≤ λ2 ≤ λ3 . . ., we can identify λ−1

1 as the
slowest timescale over which the target Boltzmann distribution is approached. This
timescale is the relaxation time τR

τR ≡
1
λ1
. (1.21)

There are situations where the relaxation time of the system can become so large
that a satisfying convergence to the equilibrium distribution becomes unattainable in
practice. This is the case where there are energy barriers with a height much larger
than the strength of thermal fluctuations. For example, consider a one dimensional
particle evolving under overdamped Langevin dynamics in the double well potential

Vdw(x) ≡ 1
4x

4 − 1
2x

2 (1.22)

This potential has two symmetric minima located at x±
m = ±xm and a maximum

at xM = 0. The two minima are separated by an energy barrier of height ∆ ≡
V (xM)− V (x±

m). If the particle is in one of the two minima, the average time required
to cross the energy barrier is the Kramers’ time τK [87, 164]

τK = 2π
µ0

√
|V ′′(x+

m)V ′′(xM)|
eβ∆. (1.23)

This time contains a prefactor that depends on the stiffness of the potential at the
bottom and at the top of the well, and an Arrhenius weight eβ∆ which grows exponen-
tially in the ratio ∆V/T . At low temperatures, very long times are needed to witness
a barrier crossing event, which is a necessary condition to attain equilibration. For
some systems with an extensive number of degrees of freedom, as amorphous materials
and spin glasses, sampling the Boltzmann distribution becomes even harder, due to
the presence of many minima and saddle points separated by high energy barriers.

It is thus clear that, even if in principle the equilibrium overdamped Langevin
dynamics given in Eq. (1.2) is granted to converge to the Boltzmann distribution in
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V

(a) (b)

Figure 1.1: (a) Illustration of the barrier crossing problem in one dimensions. (b) High
dimensional disordered systems have a complex landscape with a large number of minima
and saddle point hindering the motion.

systems with a large but finite number of degrees of freedom, in practice this procedure
may be numerically unfeasible, as long simulation times are needed before the quality
of the sampling becomes satisfactory. This happens in regimes where interactions
are much stronger than thermal fluctuations, for example at low temperature or high
density, which are precisely the regimes to be probed in order to better understand the
physics of disordered systems.

How to cope with the increasing sluggishness characterized above is a research
field of its own. The central idea is to resort to alternative dynamical evolution rules,
which might be unphysical while still granting the convergence to the target Boltzmann
distribution. How to design these alternative dynamical evolution rules is a subtle
art [17], which usually demands some knowledge of the system for which the dynamics
is tailored. For the purposes of this thesis, we can classify these dynamics into two
big families. In one family the overdamped Langevin dynamics is changed, but the
detailed balance property given by Eq. (1.9) is preserved. In Appendix A, we address
a dynamics belonging to this family, obtained by a spatial modulation of the mobility
field. In another family, initially developed in the field of applied mathematics, the
possibility that renouncing to detailed balance can be rewarded with faster relaxation
is exploited. In this thesis, we will be interested in this second family of processes,
which we will now look into more closely.

1.3 Nonequilibrium to the rescue

In this Section, we look at out-of-equilibrium dynamics, i.e. dynamics that violate the
detailed balance equation given by Eq. (1.9), while preserving the Boltzmann distribu-
tion in the steady state.

12



Sampling Boltzmann, faster

1.3.1 Transverse forces

We start by perturbing the overdamped Langevin dynamics with a generic force field
f(r), constrained to have a finite squared average over the Boltzmann distribution,
⟨|f|2⟩B = 1, with ⟨. . .⟩B ≡

∫
dr . . . ρB(r). Using this normalization, we can control the

strength of the additional drift with a single parameter γ. The resulting overdamped
Langevin equation is

ṙ = −µ0∇V + µ0γf(r) +
√

2µ0Tξ(t). (1.24)

We now impose that the steady-state of this stochastic process to be the Boltzmann
distribution ρB. This yields the condition

−βf ·∇V + ∇ · f = 0, (1.25)

which is obviously satisfied if we take f to be both solenoidal and orthogonal to the
gradient of the potential:

∇ · f = 0
f ·∇V = 0

(1.26)

at every point r. The resulting dynamics is now out of equilibrium, as can be seen by
computing the entropy production rate

σ = β⟨γ2f2⟩B > 0 (1.27)

The overdamped Langevin dynamics described by Eqs. (1.24, 1.25) is an out of equi-
librium process, but it admits the Boltzmann form as its nonequilibrium steady state
distribution. At the level of the continuity equation for ρ(r, t), this means that in the
steady state a nonzero, divergence-free current appears,

jss = γµ0fρB. (1.28)

It has been proven that the dynamics given by Eqs. (1.24, 1.25) has a relaxation time
smaller or equal than the corresponding equilibrium relaxation time, obtained for γ = 0.
A mathematical proof was given in [135, 134] and in [136] for the case of discrete Markov
processes. The derivation of theorem in the discrete case is given in Appendix. For
small γ and continuous dynamics, we propose here a simple physicist’s argument [112]
to account for the increase in the relaxation rate towards the steady state of the Fokker-
Planck operator. We first rotate the Fokker-Planck operator associated to Eq. (1.24),
as we did in Sec. 1.2, thus obtaining

Wγ ≡ −ρ
− 1

2
B Ωγρ

1
2
B = W0 + γδW (1.29)

where W0 is the Hermitian Fokker-Planck operator in the absence of the coupling
parameter γ, given by Eq. (1.19), and

δW ≡ −µ0f ·∇. (1.30)
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Due to the solenoidal nature of f, δW is a anti-Hermitian operator, δW † = µ0(∇·f)+µ0f·
∇ = −δW containing the out-of-equilibrium drive. We denote by |Ψn⟩ the eigenstates
of the unperturbed Hermitian operator W0, and by λn the associated unperturbed
eigenvalue. We are interested in the change δλ to the spectral gap ∆λ = λ1 − λ0 of
the operator W between the ground state |Ψ0⟩ and the first excited state |Ψ1⟩. We
first observe that the ground state and its (zero) energy are left unchanged by the
perturbation. Therefore, to second order in perturbation theory, we have

∆λ = −γ ⟨Ψ1|δW |Ψ1⟩

+ γ2 ∑
n>1

| ⟨Ψ1|δW |Ψn⟩|2

λ1 − λn
(1.31)

Due to the skew-Hermiticity of the perturbation the first term in Eq. (1.31) is imaginary.
This is a signature of oscillations produced by the out-of-equilibrium currents, which
we will show up later again in the thesis. The second term is real and positive. The
eigenvalues of W are thus shifted in the opposite direction to what would occur in the
case of a Hermitian perturbation. Only the real part of the spectral gap is relevant in
the computation of the relaxation times, and since it is increased by the perturbation,
the relaxation time toward the steady state distribution is reduced.

How can the solenoidal drift f be implemented? A practical, and minimal choice for
numerical implementation consists in taking f = A∇V (r), with A an antisymmetric
matrix, AT = −A. In order to have a control on the amplitude of ⟨A∇V ⟩B, we impose
the Frobenius norm of the matrix ||A||2F ≡

∑
i,j A

2
ij to be equal to the space dimension

d. The resulting dynamics with transverse forces reads

ṙ = −µ0(1 + γA)∇V +
√

2µ0Tξ(t), (1.32)

the theorem mentioned above ensures that the dynamics with transverse forces has
a shorter relaxation time compared to its equilibrium counterpart given in, Eq (1.2).
However, the theorem does not quantify the extent of the acceleration, nor its depen-
dence on the relevant parameter of the problems, such as the temperature or the details
of the potential landscape. Another question is whether, and for which parameters, the
speedup provided by transverse forces is equivalent to a renormalization of the mobil-
ity, µ0 → µ′

0, a somewhat trivial way of accelerating the dynamics. For disordered and
glassy systems, these question are unanswered, and will be addressed in this thesis.

Before exploring the performance of transverse forces, we illustrate an alternative
way by which the dynamics can be driven out of equilibrium while preserving the
Boltzmann distribution. This second method is known as lifting, and is presented with
a style largely inspired from the physics of active particles. We also sketch a connection
between a lifted dynamics and transverse forces, that gives us hope that the results
obtained with transverse forces in glassy systems might be generalizable to the broader
class of irreversible dynamics that sample the Boltzmann distribution.
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1.3.2 Lifted Markov processes

Another way by which the dynamics of the system can be driven out of equilibrium is
called lifting. It is a procedure that was born in the field of applied mathematics [63,
81], and it consists, broadly speaking, in supplementing the system under consideration
with an additional set of degrees of freedom, called lifted variables–see Appendix C2.1
for a mathematical definition of lifted Markov chain–. The lifted degrees of freedom
interact with the original ones, driving the system out of equilibrium. The dynamics
is chosen in such a way that the steady state distribution, once marginalized over the
lifted degrees of freedom, is the Boltzmann distribution for the original set of variables.
Within the lifting procedure, the aim is to transform the diffusive motion typical of
equilibrium process into a ballistic one. A mathematical justification for the use of
lifted Markov chains is given in Appendix C, where a bound for the speed of reversible
and lifted Markov chains is discussed.

In statistical mechanics, there are at least two kinds of dynamics that get very close
to the idea of lifting. The first one is the underdamped Langevin dynamics, which
obtained restoring the mass m and the momentum p in the overdamped Langevin
equation given by Eq. (1.2):

ṙ = ṗ
m

ṗ = − ζ

m
p−∇V +

√
2Tζξ(t).

(1.33)

Here ζ ≡ µ−1
0 is the friction coefficient. The overdamped Langevin result is restored by

taking the limit m → 0. Here, the momentum p plays a role analogous to the lifting
degrees of freedom. The equilibrium distribution associated to this problem is

ρB(r,p) = 1
Z
e−βV (r)−β p2

2m (1.34)

and integrating out the momentum p restores the Boltzmann distribution given in
Eq. (1.1). In the equilibrium case, alternative dynamics can be obtained by considering
stochastic process of higher order, that converge faster to the steady state, at least
in convex problems [200]. Interestingly, an adaptation of this kind of dynamics to
Monte Carlo schemes, the Hamiltonian Monte Carlo method [84], provided the original
motivation to the introduction of lifted dynamics in the seminal work of Diaconis [81].

There is another family of dynamics of interest in statistical mechanics that present
interesting resemblances with the lifted ones. It is the ensemble of active, self-propelled
particles. This broad term refers to microscopic constituents that can harvest energy
from some internal, and usually hidden, degree of freedom or from the environment
and transform it into directed motion. A formulation for lifted dynamics in terms of
active particles is the following: consider the overdamped Langevin dynamics given
in Eq. (1.2), and supplement it with a lifted set of degrees of freedom v. A lifted,
overdamped Langevin dynamics is then

ṙ = −µ0∇V (r) + v +
√

2µ0Tξ(t) (1.35)
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The lifted degrees of freedom act in the form of a self propulsion. Up to now, this
equation is a generic model for an active particle. The active particles studied in
physics are out of equilibrium systems where the steady state distribution for the
position r and the self-propulsion v, ρss(r, v) that is usually not of the Boltzmann form
in the steady state. However, we can try to impose on the dynamics of v to be such
that ∫

dvρss(r, v) = ρB(r). (1.36)

When this condition is realized, we have what we call a lifted active particle.

How should the dynamics of the self-propulsion v be defined? There is no unique
way by which this can be done. In the next section, we will present some examples
of lifted dynamics inspired from the world of active particles. The goal is twofold: we
want to give the reader a taste of the variety of choices that can be made, and provide
a connection to the transverse force dynamics described earlier in this Section.

Lifted run-and-tumble

In lifted run-and-tumble particles (lRTP) the self propulsion v has a constant magni-
tude v0, v = v0u. The direction of the self-propulsion changes from a given direction u
to a new one u′ on the unit d-dimensional sphere according to the Poisson rate

Γ(u→ u′) = βv0∇V · (u− u′)θ(∇V · (u− u′)) (1.37)

with θ(x) is the Heaviside function: θ(x) = 0 if x < 0, and 1 otherwise. If the tumbling
rate was uniform, we would recover the equation of motion of a run and tumble particle
in an external potential. Physically, the choice of tumbling rate given by Eq. (1.37)
means that a ℓ-RTP changes its direction of self propulsion more frequently when
climbing against the energy gradient, while it changes mildly when the particle is
descending the potential landscape V . The steady state distribution for a ℓ-RTP is

ρss(r,u) = 1
Ωd

ρB(r). (1.38)

with Ωd = (2π)d/2

Γ(d/2) the area of a unit sphere in d dimensions.

Lifted active Brownian particles

In this case, the modulus of the self propulsion is fixed, v = v0u, but the direction of the
self propulsion velocity diffuses on the unit sphere. For a lifted active Brownian particle
(ℓABP), the equation of motion for the self propulsion direction in d dimensions is

u̇ = βv0

d− 1 [(∇V · u)u−∇V ] +
√

2Dr [(u · η(t))u− η(t)] (1.39)

with η a Gaussian white noise with unit correlation ⟨η(t)⊗η(t′)⟩ = 1δ(t− t′), and Dr

is a rotational diffusivity. Without the first term in the square brackets on the right
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hand side, Eq. (1.39) reduces to free Brownian motion for u on the unit sphere, which
is how the self propulsion speed evolves for active Brownian particles. When the term
inside the square brackets is taken into account, the self propulsion tends to align to a
direction opposite to the energy gradient. The steady state distribution of the ℓABP
is

ρss(r,u) = 1
Ωd

ρB(r) (1.40)

as for the ℓ-RTP. It is interesting to look at how Eq. (1.39) simplifies in the case d = 2.
Here, the direction of u is completely identified by the angle θ that it makes with the
x axis. The dynamics for θ is

θ̇ = βv0Au ·∇V +
√

2Drη(t). (1.41)

with A =
[
0 −1
1 0

]
an antisymmetric matrix, so that Au is orthogonal to u.

Lifted active Ornstein-Uhlenbeck particle

For a lifted active Ornstein-Uhlenbeck particle (ℓAOUP), the modulus of the self
propulsion fluctuates. The equations of motion read

ṙ = −µ0∂rV + v0u +
√

2Tµ0ξ(t)
u̇ = −u− βv0∂rV +

√
2χ(t).

(1.42)

Compared to an AOUP, the self-propulsion speed is driven by an the gradient of the
energy V . The steady state distribution reads

ρss(r, v) = (2π)− d
2 e− u2

2 ρB(r). (1.43)

To establish an explicit connection with transverse forces, we consider the case of a
ℓAOUP with temperature-dependent mobility, µ = T−1. If we introduce the extended
variable x = (r, v)T and the extended potential U(x) = βV (r) + u2

2 we obtain from
Eq.(1.42)

ẋ = −(12d + γA)∂xU +
√

2χ(t) (1.44)

with A =
[
0d −1d
1d 0d

]
a 2d× 2d skew-symmetric matrix, χ a Gaussian white noise with

correlations ⟨χ(t)⊗ χ(t′)⟩ = δ(t − t′)12d and γ ≡ v0. Upon considering the extended
space of x and rescaling the mobility of the system, we have been able to bring forth
the presence of transverse forces in a lifted dynamics.

1.4 Summary and outlook

In this Chapter we saw that
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• The local, equilibrium, overdamped Langevin dynamics

ṙ = −µ0∇V (r) +
√

2µ0Tξ(t) (1.45)

converges to the Boltzmann distribution ρB ∝ e−βV (r) over a timescale given by
the relaxation time τR.

• τR can become extremely large, for instance in the presence of energy barriers
separating two metastable states.

• It is possible to design alternative dynamics that are out of equilibrium, but that
preserve the Boltzmann distribution in the steady state, ρss(r) = ρB(r). For a
class of these dynamics a theorem ensures that τR is reduced compared to their
equilibrium counterpart.

• A minimal implementation of this out of equilibrium drive is obtained by adding
forces transverse to the energy gradient:

ṙ = −µ0(1 + γA)∇V (r) +
√

2µ0Tξ(t) (1.46)

with AT = −A, and γ a real number encoding the strength of the nonequilbrium
drive.

There are plenty of ways by which a dynamics can be driven out of equilibrium
while preserving the Boltzmann distribution. As our goal is to quantify the extent of
the sampling speedup in glassy system, we need a candidate dynamics to implement
and study. Transverse forces appear to be a good candidate, as they are ensured to
provide a reduction of the relaxation time, and their structure represents a minimal
implementation of an irreversible driving. Moreover, the link we made with a lifting
model at the end of this chapter gives us hope that some properties of transverse forces
might pertain to other dynamics as well, such as the ones belonging to the lifting family.
In the next Chapter we build an intuition on how transverse forces operate using some
prototypical external potentials.
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Insights for transverse forces: a
particle in an external potential
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In this Chapter we build an understanding of how transverse forces operate, by
looking at different examples of a particle in an external potential. Transverse forces
are found to increase a typical microscopic evolution frequency, the escape rate. Then
we look at the cases of a particle in a harmonic well and at the barrier crossing problem,
where we quantify the sampling speedup and discuss how the trajectories are modified
in the presence of transverse forces. Interestingly, the result on the speedup are different
from the ones that one would have guessed from the naive analysis of the escape
rate. We conclude by discussing how the fluctuation-dissipation theorem is violated by
transverse forces.
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2.1 The dynamics

In this Section we study the overdamped Langevin equation of motion with transverse
forces:

ṙ = −(1 + γA)∇V (r) +
√

2Tξ(t) (2.1)
with r the position of the particle in d dimensions, V (r) an external potential and T
the temperature. The noise is white and Gaussian, ⟨ξ(t) ⊗ ξ(t′)⟩ = 1δ(t − t′). The
matrix A is antisymmetric, and creates the transverse force. In Chapter 1, we saw that
this dynamics is out of equilibrium and admits the Boltzmann form ρB ∝ e−βV as its
steady state distribution.

We start our discussion by looking at a microscopic timescale characterizing the
evolution of the system.

2.2 Escape rate

The escape rate [222, 103, 181] is the typical rate at which a particle moves away
from a given configuration to one in its neighbourhood. To compute it, we resort
to the Onsager-Machlup path integral formalism. From Eq. (2.1), the probability
P (ri + ṙidt|ri, 0) of observing a transition from an initial position ri to the position
ri + ṙidt in the infinitesimal time interval dt is

P (ri + ṙidt|ri, 0) ∝ exp
{
−dt

[ 1
4T (ṙ + (1 + γA)∇V )2 − 1

2∇
2V
]}

(2.2)

If we set ṙ = 0 in Eq. (6.48) we obtain the probability that the particle remains in its
initial configuration during the infinitesimal interval dt, i.e.

P (ri, dt|ri, 0) ∝ exp
{
−dt

[ 1
4T ((1 + γA)∇V )2 − 1

2∇
2V
]}
. (2.3)

This allows us to interpret, up to an additive constant stemming from the discretization
of a time interval into infinitesimal increments, the quantity τ−1

0 ≡ 1
T

[
1
4 ((1 + γA)∇V )2 − T

2 ∇
2V
]

as the rate at which the system escapes from its current configuration. The two terms
in τ−1

0 have the following physical meaning: the first one expresses the fact that nonzero
forces make the system move away from a given configuration. The second term tells
about the influence of the concavity of the potential on the escape process.

We can average the escape rate over the steady-state Boltzmann distribution ρB.
Using the fact that A = −AT and after an integration by parts we get〈

τ−1
0

〉
B

= 1
4T

[〈
(∇V )2

〉
B

+ γ2
〈
(A∇V )2

〉
B

]
. (2.4)

For γ = 0 we recover the equilibrium result τ−1
0,eq = 1

4T

〈
(∇V )2

〉
B
. If the potential is

spherically symmetric,
〈
(A∇V )2

〉
B

= AijAik⟨∂jV ∂kV ⟩B = 1
d
||A||2F

〈
(∇V )2

〉
B
, where

||A||2F ≡
∑
i,j A

2
ij is the Frobenius norm of A. We therefore conclude that

τ−1
0 =

(
1 + 1

d
γ2||A||2F

)
τ−1

0,eq. (2.5)
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This result shows that transverse forces increase, through a rescaling, the escape rate of
the system with respect to the equilibrium case. As a side remark, which will be useful
when studying the transverse forces in infinite dimensions, for τ0 to have a well-defined
d≫ 1 limit we shall need to work with ||A||2F ∼ d.

The analysis of the escape rate suggests that, if transverse forces act always as a
rescaling of time, their speedup with respect to equilibrium dynamics should scale as
γ2. In the next two Sections, we specialize to the case of a harmonic and of a double
well potential respectively, and we compute the relaxation time. We will see that this
intuition about the scaling of the sampling speedup with γ loses its validity for large
γ.

2.3 Harmonic well

We now consider a two-dimensional harmonic potential V (r) = 1
2r · Kr, with K ≡[

k1 0
0 k2

]
a matrix containing the stiffness coefficients of the well. We set k1 ≥ k2.

Eq. (2.1) reads then
ṙ = −(1 + γA)Kr +

√
2Tξ. (2.6)

Transverse forces are implemented via the antisymmetric matrix A,

A ≡
[
0 −1
1 0

]
(2.7)

We first look at the relaxation time of the system, by mapping the dynamics to a
quantum mechanical problem. The Fokker-Planck operator Ωγ reads

Ωγ = ∇ · [(1 + γA)Kr + T∇] . (2.8)

It governs the evolution of the probability distribution ρ(r, t), ∂tρ(r, t) = Ωγρ(r, t). The
mapping to a quantum mechanical problem is performed by considering the operator

Wγ ≡ −ρ−1/2
B Ωρ1/2

B = W0 + γAKr ·∇ (2.9)

where W0 = T
(
−∇ + β

2 Kr
)
·
(
∇ + β

2 Kr
)

is the Hermitian operator usually found for
equilibrium dynamics and the second term is a skew-Hermitian operator. Its appear-
ance is a consequence of injecting irreversible currents into the system by means of
transverse forces.

To diagonalize Wγ, we introduce a set of creation and annihilation operators

a ≡
√
TK−1

(
∇ + βK

r
2

)
a† ≡

√
TK−1

(
−∇ + βK

r
2

) (2.10)

that satisfy the commutation relations
[
ai, a

†
j

]
= δij. The operator Wγ becomes

Wγ = a† ·K
(

1 + γ

2A
)
· a, (2.11)
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and it can be rewritten in a diagonal basis,

Wγ = b†
[
λ+(γ) 0

0 λ−(γ)

]
b, (2.12)

the eigenvalues λ±(γ) are

λ±(γ) = 1
2

[
k1 + k2 ±

√
(k1 − k2)2 − γ2k1k2

]
(2.13)

and the operators b, b† are rotated creation and annihilation operators

b = Oa
b† = Oa†,

(2.14)

with O ≡ v+ ⊗ v−, v± being the eigenvectors associated to the matrix appearing in
Eq. (2.11), with eigenvalues λ±(γ) respectively. As a consequence of the theory of
the quantum-mechanical harmonic oscillator [256], the spectrum of Wγ is discrete and
characterized by a two-dimensional vector n = (n+, n−)T ∈ N2:

λn = n+λ+(γ) + n−λ−(γ). (2.15)

The ground state of Wγ, which is mapped to the Boltzmann distribution in the rotated
basis, is obtained for n = 0. The eigenvalue with the smallest nonzero real part is
λ−(γ), and the relaxation time is given by the inverse of the real part of λ−(γ). For
γ = 0, we fall back to the equilibrium case and the relaxation time is

τR(0) = 1
k2
. (2.16)

If the harmonic well is isotropic k1 = k2, then λ±(γ) = k1(1+±i|γ|), and the relaxation
time is the same as in equilibrium, τR(γ) = τR(0). We thus fall in a marginal case of
the theorem stated in Sec. 1.3.1, with transverse forces that operate by generating
oscillations of the particle inside the harmonic well, see Fig. 2.1(a), where a T = 0
trajectory at γ = 0 is compared with a γ ̸= 0 one. In the latter case, the particle
spirals to the bottom of the well.

In the anisotropic case, k1 ̸= k2, there is room for a true reduction of the relaxation
time. For γ ̸= 0 and γ2 ≤ γc ≡ (k1−k2)2

k1k2
, λ±(γ) are real numbers and the relaxation

time is
τR(γ) = 1

λ−(γ) , (2.17)

and τR(γ) < τR(0). The relaxation time is a decreasing function of γ for γ ≤ γc. For
γ > γc, λ−(γ) acquires an imaginary part, and the relaxation time saturates to the
value

τR(γ > γc) = 2
k1 + k2

< τR(0). (2.18)

This is the point where oscillations start to appear, and transverse forces cease to
enhance the sampling efficiency of the system. Figure 2.1(b) shows the relaxation time
as a function of γ in the case of an anisotropic well.
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Figure 2.1: (a) Zero temperature trajectories in an isotropic harmonic well with Kij =
δij. Without transverse forces (blue curve, γ = 0) and with transverse forces (red
curve, γ = 2). (b) Plot of the relaxation time τR(γ) for an anisotropic harmonic well
with k1 = 2, k2 = 0.5.

2.3.1 Odd transport in the harmonic well

How do transverse forces modify the trajectories of the system? Owing to their nonequi-
lbrium nature, transverse forces are accompanied by forms of transport that do not
appear in an equilibrium situation. Here we address the relevant form of odd trans-
port for the harmonic oscillator, odd diffusion. Other forms will be discussed when we
address many body systems. Odd diffusion manifests itself in the form of a nonzero off-
diagonal, anti-symmetric part of the diffusion tensor, defined as D ≡

∫+∞
0 ⟨ṙ(t)⊗ ṙ(0)⟩.

Physically, this detects the presence of a chiral, swirling motion, and the presence of
fluxes perpendicular to concentration gradients arising in the system. At the micro-
scopic level, a Green-Kubo relation, derived in [125] identifies the odd diffusion as the
time integral of the anti-symmetric part of the velocity-velocity autocorrelation tensor.

To characterize the swirling motion inside the confining harmonic well potential,
we can compute the odd diffusion constant D⊥, which is

D⊥ ≡ −
1
2

∫ +∞

0
⟨ṙ(t) ·Aṙ(0)⟩ (2.19)

where ⟨. . .⟩ is the average of the initial position over the Boltzmann distribution and
over the realisation of the noise ξ(t). Note that we conventionally chose the sign of D⊥
so that D⊥ < 0 if the system undergoes a counterclockwise swirling motion.

We consider now the case of an isotropic harmonic well, k1 = k2 = k. Using
Eq. (2.6) and the fact the realization of the noise ξ(t) are independent from ξ(0) and
r(0) we get

D⊥ = −1
2

∫ +∞

0
k2 ⟨(1 + γA) r(t) ·A (1 + γA) r(0)⟩ −

√
2Tk ⟨(1 + γA) r(t) ·Aξ(0)⟩ .

(2.20)
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Using the solution r(t) of Eq. (2.6):

r(t) = r(0)e−k⟨1+γA)t +
√

2T
∫ t

0
dτe−k(1+γA)(t−τ)ξ(τ) (2.21)

and the fact that ⟨r(0)⊗ r(0)⟩B = 1T
k
. Integration over time leads to

D⊥ = − T

1 + γ2 Tr [(1− γA) (1− γA) A (1 + γA)] = −γT. (2.22)

This is the expression for the odd diffusivity of the harmonic oscillator under transverse
forces. D⊥ does not depend on the stiffness k of the harmonic well. This is physically
due to the following cancellation effect: the odd diffusivity scales as F 2τR, where F 2

is the average squared force acting on the particle and τR the relaxation time of the
particle. Now, F 2 ∼ k2 ⟨r2⟩B ∼ k, while τk ∼ k−1, see Eq. (2.16). The two factors
cancel out, leaving D⊥ independent from the well stiffness.

In this Section, we saw how transverse forces affect the relaxation and the trajec-
tories of a particle inside a harmonic well. We now proceed to assess the efficiency of
transverse forces for a non convex problem involving the crossing of an energy barrier.

2.4 Barrier crossing

In this Section we quantify by how much transverse forces help to overcome energy
barriers. For the purpose of illustration, we resort to the Ichiki-Ohzeki (IO) formula-
tion of transverse forces [208]: two copies of a one dimensional system in an external
potential interacting through antisymmetric couplings. The positions of the parti-
cles in the two copies are encoded in the vector r ≡ [r(1), r(2)]T . The potential is
V (r) = v(r(1)) + v(r(2)), with v(x) a non convex potential which has two minima, one
of them located at xm, separated by a energy barrier of height ∆. The energy barrier
culminates at a maximum at xM . The equation of motion in Eq. (2.1) reads[

ṙ(1)

ṙ(2)

]
= −(1 + γA)

[
v′(r(1))
v′(r(2))

]
+
√

2T
[
ξ(1)(t)
ξ(2)(t)

]
. (2.23)

with A given by Eq. (5.10). We are interested in the situation where T ≪ ∆, and we
will look at the rare event where particle 1 hops over the energy barrier, while particle
2 remains confined within the bottom of the well, the simultaneous crossing of both
the particles happening with an exponentially smaller rate in the ratio ∆/T .

2.4.1 Heuristic argument

Before proceeding with a detailed analysis, there is a simple way to understand how
a nonzero γ speeds barrier crossing up. If particle 2 is confined at the bottom of the
well, its position evolves according to

ṙ(2)(t) =− v′(r(2)(t))− γv′(r(1)(t)) +
√

2Tξ(2)(t)
≃− km(r(2)(t)− xm)− γV ′(r(1)(t)) +

√
2Tξ(2)(t)

(2.24)
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where km ≡ V ′′(xm) > 0 is the stiffness of the well. We can integrate this equation and
substitute r(2) into the evolution equation for r(1):

ṙ(1)(t) =−
∫ t

0
dsMR(t− s)v′(r(1)(s)) +

√
2TΞ(t) (2.25)

where Ξ(t) is now a coloured Gaussian noise with correlations ⟨Ξ(t)Ξ(t′)⟩ ≡ δ(t− t′) +
1
2γ

2kme
−km|t−t′| ≡ MC(t − t′). The mobility kernel MR(t) = δ(t) + γ2km e −kmtθ(t)

and the correlation kernel MC(t) = 1
2MR(t) + 1

2MR(−t) are related by Kubo’s fluctu-
ation theorem for generalized Langevin equations. While the two-dimensional process
(r(1), r(2)) is a nonequilibrium one, the effective process r(1), forgetting the information
on r(2), is an equilibrium process (at least when r(2) evolves in a quadratic well). In the
large km limit, MR(t) ≃ (1 +γ2)δ(t) and the mobility of the particle picks up a γ2 con-
tribution so that the barrier crossing time is reduced accordingly: τ ≃ e β∆/(1 + γ2).
This limiting case thus matches the escape rate analysis done in Sec. 2.2 within an
effective equilibrium dynamics picture.

This heuristic approach suggests that the IO dynamics contributes to changes in
the barrier crossing time by rescaling the prefactor of the Arrhenius formula. We now
confirm this observation in the general case by looking at the most probable path taken
by the system during the barrier crossing process, also known as the instanton trajec-
tory. The process in which particle 1 overcomes the energetic barrier while particle
2 remains confined in the well corresponds, for the composite system, to a trajectory
from rm ≡ [xm, xm]T to rs ≡ [xM , xm] and from rs to the minimum on the other side
of the saddle. We now proceed with a careful analysis of the instanton trajectory.

2.4.2 Instanton trajectory: no change in the exponential factor

The barrier crossing rate τ−1 can be expressed within a path-integral formulation,

τ−1 =
∫

D r̂Dr e − 1
T
S[r,̂r] (2.26)

where the path-integral runs over paths connecting rm to rs, and where the Janssen-De
Dominicis action functional reads

S [r, r̂] =
∫ +∞

−∞
dt [ṙ · r̂−H (r, r̂)] (2.27)

The response field r̂ expresses the effect of the noise on the dynamics of r. In the
small noise T → 0 limit, the path that dominates the integral minimizes S, and the
resulting saddle-point trajectories follow a Hamiltonian-like dynamics (with respect to
H in Eq. (2.27)) in a space of extended variables where the conjugate field r̂ stands for
a momentum. The escape time τ then satisfies the logarithmic equivalenceτ ≍ e ϕ

T

ϕ ≡ minr(t)|r(−∞)=rm, r(+∞)=rs S [r, r̂]
(2.28)

The explicit expression for H(r, r̂) is

H(r, r̂) ≡ r̂2 − r̂ · (1+ γA) ·∇U(r) (2.29)
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The minimum of S for the trajectories of interest is found by looking for the solutions
of the Hamiltonian system induced by H along the H = 0 energy manifold, so that we
have the differential equationsṙ = ∂H

∂r̂ = − (1+ γA) ·∇V (r) + 2r̂
˙̂r = −∂H

∂r = (1+ γA) · Hess V (r) · r̂
(2.30)

together with the condition H(r, r̂) = 0. Here Hess V (r)ab ≡ v′′(r(a))δab is the Hessian
matrix of V . These coupled differential equations are equivalent toṙ = (1− γA) ·∇V (r)

r̂ = ∇V (r)
(2.31)

which, in principle, can be solved explicitly if a potential V is specified. We solve
the instanton trajectory ṙ within perturbation theory up to second order in γ as a
functional of the external potential V , assuming the γ = 0 trajectory is fully known. A
linear analysis of the trajectory close to the saddle point rs shows that the perturbation
expansion must have the form

r(1) = r
(1)
0 + γ2r

(1)
2 +O(γ4)

r(2) = r
(2)
0 + γr

(2)
1 +O(γ3)

(2.32)

with ṙ
(1)
0 = v′

(
r

(1)
0 (t)

)
and r

(2)
0 = 0. By taking into account the boundary condition

for the perturbation r(+∞)(a)
i = r(−∞)(a)

i = 0 for a = 1, 2, i > 0 we obtain

r
(2)
1 = − e kmt

∫ +∞

t
dτ e −kmτv′

(
x

(1)
0 (τ)

)
(2.33)

r
(1)
2 = km e G(t)

[∫ +∞

t
dτ e −G(τ)r

(2)
1 (τ) + C

]
(2.34)

where G(t) ≡
∫

dτv′′(r(1)
0 (τ)) and C is a constant determined by matching the asymp-

totic expression for r(1)
2 (t) for t→ +∞ to the linear expansion at rs. We illustrate the

role played by γ in deforming the equilibrium trajectory in Fig. 2.2. As done in pre-
vious studies of the escape time out of equilibrium [50], we have chosen as an explicit
potential v the well-known double well v(x) ≡ 1

4x
4 − 1

2x
2. We see that indeed system

2 finds it optimal to rise in its own energy landscape to favour the crossing of system
1 over the barrier. Interestingly, the action for the instanton trajectory is unchanged
with respect to the equilibrium dynamics, namely

S [r, r̂] =
∫ +∞

−∞
dtṙ ·∇V (r) = ∆ (2.35)

This result is identical to the one obtained with the equilibrium dynamics at γ = 0,
supporting the the heuristic analysis of Sec. 2.4.1. While the instanton trajectory is
clearly altered, the Arrhenius factor is left unchanged by the IO dynamics. In the
next section, we investigate the dependence on γ of the prefactor to the Arrhenius
exponential.
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Figure 2.2: (a) Gradient flow of the double well potentials for two noninteracting
particles. (b) Force field for two copies of a particle in a double well potential coupled
with Ichiki-Ohzeki interactions, γ = 0. (c) Instanton trajectory from Eq. (2.31) for
γ = 0 and its perturbation expansion up to second order in γ for the double well
potential v(x) = 1

4x
4− 1

2x
2. The instanton starts from the minima located at (−1,−1)

and ends at the saddle point located at (0,−1). Adapted from [112]

2.4.3 Full expression of τ

Bouchet and Reygner [48] have derived an Eyring-Kramers formula for nonequilibrium
dynamics which do not necessarily sample the Boltzmann distribution. Here we spe-
cialize their general result to the IO dynamics, which allows us to arrive at a concrete
γ-dependence of the escape time. When applied to the IO dynamics the time τ reads

τ = 2π
|λ+|

√
kM
km

e ∆
T (2.36)

where kM ≡ −V ′′(xM) > 0, km ≡ V ′′(xm) > 0, and λ+ is the eigenvalue related to the
unstable direction of the dynamics linearized around the saddle point rs:

|λ+| =
1
2

[
kM − km +

√
(kM + km)2 + 4γ2kMkm

]
(2.37)

For γ = 0 Eq. (2.36) yields the well-known Kramers’ time

τ = 2π√
kMkm

e ∆
T (2.38)

while for γ ̸= 0 we have λ+ > kM and the time required for particle 1 to hop over the
energetic barrier is reduced.

We realize a posteriori that the heuristic approach of Sec. 2.4.1 was physically
sound. It can indeed be recovered by letting km → +∞ in Eq. (2.37), yielding λ+ ≈
kM(1 + γ2). This limiting case is actually the smallest achievable value of τ at given
γ, kM and ∆V , since ∂kmλ+ is always positive.

What happens when transverse forces are very strong? In the limit γ → ∞, the
barrier crossing time decreases as τ ∼ γ−1, in contrast with the scaling suggested by
the initial analysis of the escape rate don in Sec 2.2, from which a scaling τ ∼ γ−2

was derived. Note that the theoretical sampling efficiency of transverse forces must
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eventually saturate: this happens because the barrier crossing time can be reduced to
0, while the relaxation time inside an harmonic well saturates to a lower bound, as we
saw in Sec. 2.3.

In this Section, we saw that transverse forces speedup the process of barrier crossing
via a prefactor in the Kramer’s time. We now want to find what happens in the case
of a many-body system with several energy barrier? Before answering this question,
we investigate how fluctuation dissipation relations are affected by the presence of
transverse forces.

2.5 Fluctuation-dissipation relations

In this Section we look at how transverse forces affect fluctuation-dissipation relations.
Our starting point is the transverse forces dynamics for a particle in d dimensions under
an external potential V and an external force Fext(t). With this modification, Eq. (2.1)
reads

ṙ = −(1 + γA)∇V (r(t)) + Fext(t) +
√

2Tξ(t)
≡ Fγ(t) + Fext +

√
2Tξ(t)

(2.39)

The main tool we use is a path-integral average over the dynamics. Denoting by
O(t) = O(r(t)) a generic vector observable that depends on the position of the particle
at time t, we introduce two types of averages. The average in the presence of an
external force Fext:

⟨O(tobs)⟩ext
γ ≡

∫
dr0

∫
Dr(t)O(t)e−Sext

γ [r(t)]ρB(r0) (2.40)

with Sext
γ the Onsager-Machlup action associated to the transverse force dynamics,

perturbed by the external force:

Sext
γ [r(t)] ≡ 1

4T

∫ tobs

0
dt
(
ṙ(t)− Fγ(t)− Fext

)2
, (2.41)

and the average over the unperturbed transverse force dynamics:

⟨O(tobs)⟩γ ≡
∫

dr0

∫
Dr(t)O(t)e−Sγ [r(t)]ρB(r0) (2.42)

with Sγ the Onsager-Machlup action associated to the transverse force dynamics when
Fext(t) = 0:

Sγ[r(t)] ≡ 1
4T

∫ tobs

0
dt (ṙ(t)− Fγ(t))2 , (2.43)

Both averages ⟨. . .⟩γ and ⟨. . .⟩ext
γ involve an average over the initial condition at time

t = 0, which follows the steady-state, Boltzmann distribution and the dynamics up to
time tobs, with the boundary condition r(t = 0) = r0.

We want to establish a relation between the response function

Rγ
ab(t, t′) ≡

〈
δOa(t)
δFext

b (t′)

〉ext

γ

∣∣∣∣∣∣
Fext=0

(2.44)
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and the correlation function

Cγ
ab(t, t′) ≡ ⟨Oa(t)rb(t′)⟩γ. (2.45)

Before doing this, however, it is useful to consider how the action behaves under time
reversal. For a given path r(t) starting at t = 0 and ending at t = tobs, define rR(s) ≡
r(tobs − s) as its time-reversed counterpart. Then we have

Sγ[r(t)]− S−γ[rR(t)] = 1
T

[V (r(tobs))− V (r(0))] (2.46)

For γ = 0, we recover detailed balance. For γ ̸= 0, the above equation implies that we
can reverse time for the observable inside the average ⟨. . .⟩γ, at the cost of changing
the sign of γ:

⟨Oa(r(t))⟩γ = ⟨Oa(rR(t))⟩−γ (2.47)

. Eq. (2.46) is known in the literature of lifted Markov Chains as skew detailed bal-
ance [255].

We can now start compute the response function. Applying the functional derivative
to the Onsager-Machlup action we get

Rab(tobs, t
′) = 1

2T [⟨Oa(tobs)ṙb(t′)⟩γ − ⟨Oa(tobs)F γ
b (t′)⟩γ] (2.48)

On the other hand, using Eq. (2.46), and assuming that O(t) is even under time reversal,
we have

Rab(t′, tobs) = − 1
2T [⟨Oa(tobs)ṙb(t′)⟩−γ − ⟨Oa(tobs)F γ

b (t′)⟩−γ] (2.49)

If we choose tobs ≥ t′, then Rab(t′, tobs) = 0 by causality, and we have

Rab(tobs, t
′)−Rab(t′, tobs) = Rab(tobs, t

′) = 1
2T [⟨Oa(tobs)ṙb(t′)⟩γ + ⟨Oa(tobs)ṙb(t′)⟩−γ]

− 1
2T [⟨Oa(tobs)F γ

b (t′)⟩γ − ⟨Oa(tobs)F γ
b (t′)⟩−γ] .

(2.50)

Using time translation invariance and the matrix notation, Eq. (2.50) becomes

Rγ(t) = − 1
2T ∂t [Cγ(t) + C−γ(t)]−

1
2T [Dγ(t)−D−γ(t)] (1− γA) (2.51)

with t ≡ tobs− t′, and we have introduced the matrix Dγ(t) ≡ ⟨O(t)⊗∇V (r(0))⟩γ. For
γ = 0 we find the usual fluctuation dissipation relation

R0(t) = − 1
T
∂tC0(t). (2.52)

The breaking of time reversal symmetry yields a violation of the fluctuation dissipation
relation. Eq. (2.51) will be used later when studying the relation between the mobility
and diffusion tensor in dense liquids.
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While we expect Eq. (2.51) to hold for a generic, possibly nonconservative force
applied to the system, the case where the external perturbation is obtained by shifting
the energy by an amount δV (r) = −h(t) ·w(r), with h(t) a time dependent vector field
and w(r) a conjugated observable, is of special interest. In this case, we can introduce
a response function R′ with respect to change in the field h(t) as

R′ab
γ (t, t′) =

〈
δOa(t)⟩
δhb(t′)

〉
γ

∣∣∣∣∣∣
h=0

. (2.53)

Since transverse forces preserve the Boltzmann distribution in the steady state, the lin-
ear response formalism can be developed as in the equilibrium case, thus obtaining [59]
in the stationary regime

R′
γ(t) = − 1

T
∂tC′

γ(t) (2.54)

with C′
γ(t − t′) = C′

γ(t, t′) ≡ ⟨O(t) ⊗ w(t′)⟩γ the correlation function between the
observable O and the variable w(r) conjugated to the small field h(t). In this case,
the fluctuation dissipation theorem is restored. If we choose w so that w(r) = r, then
Fext = (1+γA)h(t). This means that R′(t, t′) = R(t, t′)(1+γA), and C′(t, t′) = C(t, t′)
and therefore

R(t)(1 + γA) = − 1
T
∂tC(t). (2.55)

These different formulations of the fluctuation-dissipation relation will be useful in
subsequent parts of the thesis.

2.6 Summary and Outlook

In this Chapter we studied the effect of transverse forces in the motion of one particle
in an external potential, and we found that

• The escape rate of the system τ−1
0 , i.e. the typical rate at which a particle evolve

from a configuration to another, is enhanced with respect to its equilibrium τ0,eq

value through a rescaling:
τ−1

0 ∼ (1 + γ2)τ−1
0,eq (2.56)

• In an isotropic harmonic well, transverse forces do not reduce the relaxation
time: τR(γ) = τR(0). If the well is anisotropic, then τR(γ) < τR(0), and saturation
occurs at large γ.

• Even when the particle is confined in a harmonic well, a form of odd transport
emerges, due to the swirling motion induced by transverse forces. This is captured
by a nonzero odd diffusion constant D⊥ = −γT .

• The time required to cross an energy barrier with transverse forces follows the
Arrhenius law τ ∼ e ∆

T , but the prefactor is smaller than its equilibrium coun-
terpart. The instanton trajectory from the bottom of the energy well to the
saddle point bends when γ ̸= 0. At large γ, the barrier crossing time decreases
as τ ∼ γ−1.
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• Due to the breaking of time reversal symmetry, the fluctuation dissipation theo-
rem is no longer valid, unless the perturbation consists in a change of the poten-
tial.

We can now move to study the performance of transverse forces in a paradigmatic
model of disordered systems with a rugged energy landscape, namely the p-spin spher-
ical model.
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Accelerating a mean field spin glass
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In this chapter, we put transverse forces to the test in the p-spin spherical model, a
mean field spin glass with a rugged energy landscape. We derive dynamical equations
for the correlation and the response functions of the system. The evolution of the
correlation and response functions is then studied by direct numerical integration and
analytically, through a form of accidental fluctuation dissipation relation. We find that,
as for equilibrium dynamics, there is a temperature below which the dynamics of the
system becomes arrested and ergodicity is broken. This temperature is not modified by
transverse forces: it is the same as in equilibrium. In the ergodic region, we quantify
the speedup provided by transverse forces, and interpret it in terms of the evolution of
novel correlation functions that are absent in the equilibrium case.
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3.1 The p-spin spherical model

The spherical p-spin is a disordered, fully connected model of N interacting spins
σ1, . . . , σN fulfilling the constraint ∑N

i=1 σ
2
i = N . The energy V [{σi}i=1,...,N ] of a con-

figuration is
V [{σi}i=1,...,N ] = −

∑
i1<...<ip

Ji1...ipσi1 . . . σip (3.1)

where the Ji1...ip are independent quenched random couplings with variance 2J2

p!Np−1 .
This model was introduced at the beginning of the 90s [66, 65] to better understand
the replica symmetry breaking scenario occurring in many models of spin glasses. After
its introduction, it has been instrumental in shaping up our understanding of disordered
and glassy systems [67, 15, 93], including active ones [36], up to our days [91, 154, 215].

A summary of the properties relevant to the present discussion [14, 56] is that this
model undergoes a transition from a paramagnetic state at high temperatures to a
spin-glass phase at low temperatures T < Tc [66]. From a static point of view, its
peculiarity is that there exists an intermediate temperature Td > Tc such that in the
temperature range Tc < T < Td an exponentially large number of metastable states
appears, without however affecting the paramagnetic nature of the system. From a
dynamical standpoint, while the system relaxes above Td, it fails to explore this complex
energy landscape as soon as T < Td [65], when endowed with purely relaxational
equilibrium dynamics. The spin-spin correlation function

C(t, t′) = 1
N

∑
i

⟨σi(t)σi(t′)⟩ (3.2)

In the stationary state, where C(t, t′) = C(t− t′), the correlation function fails to relax
to 0 as t−t′ → +∞ for T < Td, reaching instead a temperature-dependent plateau value
q. For this reason, the p-spin represent an ideal test-bench to quantify the acceleration
provided by new sampling protocols, such as the transverse force dynamics.

3.2 Transverse forces in the p-spin: Ichiki-Ohzeki dynam-
ics

We implement transverse forces in the p-spin using the Ichiki-Ohzeki (IO) dynam-
ics [208]. we consider two coupled p-spin systems (with the same realization of the
disorder), with spins σ(1)

i and σ
(2)
i evolving according to

[
σ̇

(1)
i

σ̇
(2)
i

]
= −(12 + γA)

 ∂H

∂σ
(1)
i

+ µ(1)(t)σ(1)
i

∂H

∂σ
(2)
i

+ µ(2)(t)σ(2)
i

+
√

2T
[
ξ

(1)
i (t)
ξ

(2)
i (t)

]
. (3.3)

The matrix A ≡
[
0 −1
1 0

]
implements the transverse force, an antisymmetric coupling

of strength γ between the two systems. The noises ξ(a)
i (t) are white and Gaussian, with

34



Accelerating a mean field spin glass

correlation ⟨ξ(a)
i (t)ξ(b)

j (t′)⟩ = δijδabδ(t − t′). The functions µ(a)(t) are adjusted so that
the spherical constraint ∑N

i=1

〈(
σ

(a)
i (t)

)2
〉

= N is fulfilled throughout the dynamical
evolution. There is a large body of literature on the effect of a nonequilibrium drive
on the p-spin (or on other complex systems with a similar glassy behavior at low
temperatures). In these works it has consistently been found that in the presence of
a nonequilibrium drive (be it in a randomized non-relaxational dynamics [68], or in a
shear [25] or with an active force [36]) a lower temperature than the equilibrium one
is required in order to witness the onset of ergodicity breaking. However, in those
cases the nonequilibrium stationary-state that is being sampled is not the Boltzmann
distribution, and it is in general unknown. We stress that, unlike in the latter series of
works, the IO dynamics does correctly sample, in its stationary state, the Boltzmann
distribution ρB ∼ e −βH for H = V [{σ(1)

i }] + V [{σ(2)
i }] (with V given in Eq. (3.1)),

despite being a nonequilibrium dynamics. From an analytical standpoint, a remarkable
feature of the standard dynamics of the p-spin, which is preserved by Eq. (3.3) is that
the mean-field nature of the problem allows us to write the stochastic evolution of
a single spin in terms of unknown functions (the spin-spin correlation, the response
function that enters the memory kernel, and noise correlations) that are determined
self-consistently. Such a procedure can be applied to our case. Note however that
in the context of the IO dynamics, the spin-spin correlation becomes a collection of
four spin-spin correlations Cab(t, t′) = 1

N
⟨∑i σ

(a)(t)σ(b)(t′)⟩, and the same holds for the
response function

Rab(t, t′) ≡
1
N

∑
i

δ⟨σ(a)
i (t)⟩

δh
(b)
i (t′)

(3.4)

where hai (t) is a time-dependent force field applied to spin i of system a. For numerical
purposes, we will work with the integrated response Fab(t, t′) ≡ −

∫ t
t′ dτRab(t, τ) .

Using a path integral formalism and the mean field approximation, we write an
effective Langevin equation for the dynamics of a single spin σ(1) in system 1 and
its counterpart σ(2) in system 2, from which self-consistent equations of motion for
the correlation and the integrated response can be derived. Since our interest goes
to the dynamics in the steady state we assume time translational invariance to hold,
Cab(t, t′) = Cab(t− t′) and Fab(t, t′) = Fab(t− t′). The effective equations of motion for
σ(t) ≡

[
σ(1) σ(2))

]T
, for the correlation matrix C and the integrated response matrix
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F are:

∂tσ(t) = − (12 + γA) · µ(t) · σ(t) +
∫ t

0
dτMF(t− τ) · σ(τ)

+ 1
T

(12 + γA) ·C0(p, t) · σ(0) + Ξ(t) (3.5)

∂tF(t) = −12 − (12 + γA) · µ(t) · F(t) +
∫ t

t′
dτMF(t− τ) · F(τ) (3.6)

∂tC(t) = − (12 + γA) · µ(t) ·C(t) +
∫ t

0
dτMF(t− τ) ·C(τ) + 1

T
(12 + γA) ·C0(p, t)

(3.7)

µ(t) = Diag
T12 +

∫ t

0
dτM(t− τ) ·CT(t− τ) +

∫ t

0
dτD(t− τ) · ∂τFT(t− τ)

+ 1
T

(12 + γA) ·C0(p, t) ·CT(t)


(3.8)

where the coloured Gaussian noise has correlations ⟨Ξ(t) ⊗ Ξ(t′)⟩ = 2T12δ(t − t′) +
D(t, t′). The three kernels MF, C0 and D that appear in Eqs. (3.5, 3.6, 3.7) are non-
linear functionals of the elements of C and F. The overall structure of these equations
is similar to the equilibrium setting, and the derivation is detailed in App. D1. These
equations are solved with the boundary conditions C(0) = 12, F(0) = 0, while the
diagonal matrix µ(t) enforces the spherical constraint.

In the case of standard equilibrium dynamics, the response and the correlations
are related by the fluctuation-dissipation theorem (FDT), ∂tF(t) = − 1

T
∂tC(t) and it

is possible to obtain a closed equation for the spin-spin correlation function of the
system alone. By focusing on the long time limit of the dynamics one can then find the
temperature below which the correlation function displays a nonzero plateau at infinite
times when ergodicity is broken. Since the IO dynamics is a nonequilibrium one, we
cannot resort to the fluctuation dissipation theorem, and analytical manipulations
of Eqs. (3.5, 3.6, 3.7, 3.8) may seem, at first sight, out of reach. In the following
section, however, we shall exhibit a simple argument that suggests that for the specific
correlations and integrated response considered above, a relation formally similar to
the FDT might still survive in the nonequilibrium steady-state.

3.2.1 Numerical integration

We integrate the dynamical equations Eqs. (3.6, 3.7, 3.8) for p = 3 using a finite
difference method implemented in [102, 155, 27, 92] and detailed in App. D2. We
check that our implementation of the IO dynamics samples the correct Boltzmann
distribution by measuring the energy per spin E∞ at long times in the ergodic phase.
This is a static quantity independent of γ, for which a value of E∞ = − 1

2T is predicted
on the basis of the equilibrium statics alone [66]. In the numerical integration, we
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Figure 3.1: Energy per spin as a function of temperature T obtained from numerical
integration (blue dots) at γ = 1 and theoretical prediction E∞ = − 1

2T (black dashed
line).

computed the energy by exploiting the relation

µ(t→ +∞) = (T − pE∞) 12 (3.9)

The agreement between the measured value of E∞ and its theoretical prediction is
shown in Fig. 3.1. The errors are of order 10−12 and they are therefore negligible.

Having ascertained that our implementation of the IO dynamics correctly samples
a static quantity, we proceed by investigating the time behavior of the correlation
function of one subsystem. Our results are presented in Fig. 3.2. In the range of pa-
rameters explored, with γ up to 2.4, the IO dynamics is accelerated by a non negligible
amount compared to the standard one. For γ ≈ 2.4, the highest coupling achievable
while preserving the convergence of the integration scheme, the convergence to 0 of
the correlation function is anticipated by almost an order of magnitude. For T < Td,
the system freezes even at γ ̸= 0, and the position of the infinite time plateau is left
unchanged.

We quantify the speedup obtained by means of the IO dynamics by measuring the
relaxation time τα(γ), defined here as the time necessary for C11 to decay to the value
1/e in the ergodic phase. Our results are shown in Fig. 3.3. The ratio between τα(γ)
and the relaxation time in the standard dynamics, τα(0) appears to scale approximately
as (1 + γ2)−1. This scaling the same as the one found in Sec. 2.4.1 when heuristically
discussing the Kramers’ problem. We will provide the reader with further interpretation
for this phenomenon in the next section.

The departure of the IO dynamics from the equilibrium dynamics is accompanied
by an early growth in the cross correlations of the system. This can be seen in Fig. 3.2,
where we plot C12 in dotted lines, and is presented in more detail in Fig. 3.4, where
a close up of the cross correlations for various values of γ is shown. The dynamics of
these quantities is entirely located in the region of β-relaxation of C11. They exhibit
a bump at short times, reaching a point of maximum modulus and then decaying to
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Figure 3.2: Correlation function of system 1, C11(t) for γ = 2.4 (solid lines) and
γ = 0 (dashed lines) for various temperatures above and below Td ≈ 0.6124. The
dotted curves represent the cross correlations C12(t) for γ = 2.4. The shift between
the dashed and the solid line of a given colour, which quantifies the acceleration of the
dynamics, somewhat increases as the temperature is decreased.

zero. This maximum grows linearly with γ for γ ≲ 1. The location of the maximum
moves left to shorter times as γ grows. This can be rationalized by observing that the
entropy production rate per spin is σ

N
= 2γ2µ, and that therefore the timescale over

which non reversible effects appear decreases with γ.

3.2.2 Fluctuation-dissipation relation

In this Section, we look at how the fluctuation-dissipation relation is modified by
transverse forces for the p-spin. Since in a spin system external perturbations are
applied by means magnetic fields, which consist in a shift of the energy V , we expect
the fluctuation dissipation theorem discussed at the end of Sec. 2.5 to hold. Since we
have defined the response matrix R(t, t′) as the response of the system with respect
to an applied force, we expect that in the stationary state, a fluctuation-dissipation
relation of the following form

R(t, t′)(1 + γA) = − 1
T
∂tC(t) (3.10)

to hold. Using the integrated response matrix F, Eq. (3.10) can be rewritten as

F(t)(1 + γA) = 1
T

[C(0)− C(t)] (3.11)

A numerical test for a particular entry and particular values of T and γ of Eq. (3.11)
is shown in Fig. 3.5. Similar results are obtained for other entries and other values of
coupling and temperature. Eq. (3.11) can be proven analytically. We can indeed show
that if Eqs. (3.7, 3.8) and the aFDT relation Eq. (3.10) are true then the remaining
equation Eq. (3.6) must also hold. The details of the proof are reported in App. D3.
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Figure 3.3: Ratio between the relaxation time of C11 for the IO dynamics, τα(γ), and
the equilibrium dynamics τα(0) for temperatures close to Td.
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Figure 3.4: Cross correlation C12 (dotted lines) and C21 (dashed lines) as a function of
time for T = 0.613 at different values of γ.

The numerical investigation performed in this section raises a series of questions
to be answered. Can we explain the absence of a shift in the dynamical temperature
Td? Is it possible to justify the scaling of the relaxation time of C11 with γ? In the
following section we shall build a theoretical understanding of our numerical findings.

3.2.3 Speedup and ergodicity breaking

By using the aFDT relation we can reduce the set of Eqs. (3.6, 3.7, 3.8) to a single
equation for the correlation matrix C(t):

∂tC(t) = −T (12 + γA) ·C(t)

− 1
T

(12 + γA)
∫ t

0
dτC0(p, t− τ) · ∂τC(τ)

(3.12)
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Figure 3.5: Parametric plot of the left and right hand side of the first entry of Eq. (3.11)
from the integration of Eqs. (3.6, 3.7, 3.8) at T = 0.613 and γ = 2.4.

with C0(p, t)ij ≡ p
2C

p−1
ij . Apart from the matrix prefactor (12 + γA) the structure

of this equation is the same as the one obtained in the standard equilibrium dy-
namics of the p-spin [65, 14, 56]. We therefore study its long time behavior by as-
suming that limt→+∞ C(t) = Q, with Q a matrix of long time plateaus generalizing
the nonergodic parameter. We introduce the Laplace transform of a matrix M(t)
as M̃(z) ≡

∫+∞
0 dtM(t) e −zt and we observe that C̃(z) ≈ Q

z
and C̃0(p, z) ≈ Q0(p)

z

as z → 0, with Q0(p)ij ≡ Qp−1
ij . Applying the Laplace transform to both sides of

Eq. (3.12) and keeping only the terms that diverge as z → 0 yields

TQ− 1
T

Q0(p) · (12 −Q) = 0 (3.13)

We now see that the dependence on Γ has simply disappeared. The form of the
plateaus matrix can therefore not depend on γ. In particular, it must match the
solution obtained at γ = 0. We can therefore write Q = Q12 and Q0(p) = Qp−112.
Eq. (3.13) then becomes the standard equation for the long time plateau of the p-spin
equilibrium dynamics

2T 2

p
= Qp−2(1−Q) (3.14)

In analogy with the Kramers problem and the harmonic oscillator of Sec. 2.4 we see that
an increased mobility (12 + γA) arises in the IO dynamics of the p-spin. This rescaling
of the mobility can always be absorbed into a rescaling of the time units. Below Td,
where the plateau extends to infinite times, the dynamical ergodicity breaking cannot
be avoided while above Td an acceleration is achieved.

We support the above picture by carrying out a perturbation expansion to second
order in γ. In particular we recover the scaling of the relaxation time τα shown in
Fig. 3.3 starting from the dynamical equation for the correlation matrix Eq. (3.12).
We multiply both sides by 12 + γAT and we expand C in powers of γ, C ≈ δ0C +
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γδ1C + γ2δ2C, thereby obtaining:

∂tC(t) + γAT · ∂tδ1C(t) =− (1 + γ2)
C(t) + 1

T

∫ t

0
dτC0(p, t− τ) · ∂τC(τ)

 (3.15)

The second term on the left hand side contains δ1C, the first order perturbation of C.
It is a skew symmetric matrix and therefore it contributes to the expansion of the cross
correlations shown in Fig. 3.4. Motivated by the numerical observation of Sec. 3.2.1
we assume that this term essentially vanishes at times larger than the time scale at
which the β relaxation takes place. Moreover, because of the skew symmetry of the
first order perturbation, the diagonal entries of Eq. (3.15) are not affected by the short
time dynamics of δ1C. We therefore obtain, to second order in γ:

∂tCaa(t) =− (1 + γ2)
TCaa(t) + 1

T

∫ t

0
dτCaa,0(p, t− τ)∂τCaa(τ)

 (3.16)

for a = 1, 2. This is the same equation as that of the equilibrium dynamics, up to a
rescaling of time t→ t/(1 + γ2), in agreement with the findings of Fig. 3.3.

3.3 Random solenoidal fields

Let us look at the p-spin with transverse forces studied in this chapter from a more
general perspective: in this chapter, we studied a mean field model whose dynamics
is governed by a combination of a disordered conservative force and a solenoidal force,
namely the one implemented through transverse forces. The latter is random too,
since it is related with the gradient term via the antisymmetric matrix A, as shown in
Eq. (3.3). One could then ask what happens in a more general setting, where the ran-
dom solenoidal force is not constrained to have a transverse form. This section collects
some work in progress addressing this question. Consider the following overdamped
Brownian Dynamics of a particle in d dimensions

ṙi = −µri −
∂V (r)
∂ri

+ 1√
d

d∑
j=1

∂Aij(r)
∂rj

+
√

2Tξi(t) (3.17)

The noise is white and Gaussian, with zero mean and covariance ⟨ξi(t)ξj(t′)⟩ = δijδ(t−
t′). The first contribution is a restoring harmonic force with stiffness µ, that keeps
the particle confined. The second and third term are respectively the gradient of a
potential V and a solenoidal field, with vector potential A. Both the gradient and the
vector potentials are taken to be random, with correlations

V (r)V (r′) = −v2dΓV
(

(r− r′)2

d

)

Aij(r)Anm(r′) = −a2dΓA
(

(r− r′)2

d

)
(δinδjm − δimδjn) .

(3.18)

Note the antisymmetry of the covariance for the field Aij(r). The parameters v and a
encode the strength of the disorder of V and Aij respectively, and the functions ΓA,ΓV
describe the decay of the space correlations.
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Eq. (3.18) represents a general Helmholtz decomposition of the forces acting on
disordered systems into a conservative and a nonconservative part. For example, for
a = 0, v = 1 and ΓV (x) ≡ −1

2(1− x
2 )p, and imposing the additional spherical constraint

⟨r2(t)⟩ = d (which implies that the stiffness is a function of time µ = µ(t)) one falls
back onto the equilibrium dynamics of the p-spin spherical model. The 0 temperature
dynamics of Eq. (3.18) has been studied as a general model for the stability of ecological
systems [105, 18]. In a nutshell, the nature of the fixed points of the zero temperature
dynamics changes as two parameters τ ≡ v2

a2+v2 , and m ≡ µ/
√
a2Γ′′

A(0) + v2Γ′′
V (0) are

varied. The combination τ represents the competition between gradient and solenoidal
forces, while m encodes the strength of the restoring harmonic force compared to the
disordered forces. When m > 1, the system has only one stable fixed point. For
mc(τ) < m < 1 the system has an exponentially large (in the dimension d) number of
unstable fixed points, and only a sub-exponential number of minima. For m < mc(τ),
both minima and saddle points proliferate exponentially, with the number of saddle
points being exponentially larger than the number of minima.

A relevant question is what happens to the dynamics of the system when T > 0.
While the case a = 0 (an hence τ = 1) has been extensively studied, both in its
stationary and ageing regimes [157, 156, 70], where a dynamical glass transition is
found for T < Tc(µ). What happens for a ̸= 0 is an open questions, that we want to
address. Here we describe a first step in this direction, the derivation of the dynamical
equation for the correlation and response function.

As for the study of the p-spin, we are interested in determining equations of motion
for the response function R(t, t′) and the correlations C(t, t′). Since Eq. (3.18) hold
also in the absence of spherical constraints, we need to study also the mean squared
displacement B(t, t′), defined as

R(t, t′) ≡ 1
N

N∑
i=1
⟨ri(t)r̂i(t′)⟩ (3.19)

C(t, t′) ≡ 1
N

N∑
i=1
⟨ri(t)ri(t′)⟩ (3.20)

B(t, t′) ≡ 1
N

N∑
i=1
⟨(ri(t)− ri(t′))2⟩ = C(t, t) + C(t′, t′)− 2C(t, t′) (3.21)

We resort to a path integral formalism to obtain effective equations of motion for
the particle, upon averaging over the disorder. The derivation is along the lines of one
for the p-spin in Appendix D1. Here we provide the relevant steps. The Janssen-De
Dominicis action reads:

S [r, r̂] =
∑
i

∫
dtir̂i(t)

ṙi(t) + µri + ∂V (r)
∂ri

− 1√
d

∑
j

∂Aij(r)
∂rj

+ T r̂i(t)2 (3.22)

With r(t) and r̂(t) two trajectories of the particle and the related conjugate field. The
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average over the disorder for the exponential weight of a given trajectory is

exp (−S [r, r̂]) = exp
−∑

i

∫
dtir̂i(t) [ṙi(t) + µri(t] + T r̂i(t)2

+ 1
2
∑
i,j

∫
dtdt′ir̂i(t)ir̂j(t′)

∂V (r(t))
∂ri

∂V (r(t′))
∂rj

+ 1
2N

∑
i,j,k,l

∫
dtdt′ir̂i(t)ir̂j(t′)

∂Aik(r(t))
∂xk

∂Ajl(r(t′))
∂xl


(3.23)

The force correlations for the potential and the solenoidal fields can be computed by
deriving the correlators:

∂V (r(t))
∂ri

∂V (r(t′))
∂rj

= 2v2δijΓ′
V

(
(r− r′)2

d

)

− 4v2 (ri(t)− ri(t′))(rj(t)− rj(t′))
d

Γ′′
V

(
(r− r′)2

d

) (3.24)

∑
k,l

∂Aik(r(t))
∂xk

∂Ajl(r(t′))
∂xl

= 2a2 (d− 1) δijΓ′
A

(
(r− r′)2

d

)

− 4a2δij
(ri(t)− ri(t′))2

d
Γ′′
A

(
(r− r′)2

d

)

+ 4a2 (ri(t)− ri(t′))(rj(t)− rj(t′))
d

Γ′′
A

(
(r− r′)2

d

)
(3.25)

In a saddle point approximation, one can write∫
dtdt′

∑
i,j

ir̂i(t)ir̂j(t′)
(ri(t)− ri(t′))(rj(t)− rj(t′))

d
= 2

∫
dtdt′

∑
i

ir̂i(t)R(t, t′) [ri(t)− ri(t′)]

(3.26)
and neglect contributions of order d−1 or higher. The effective equations for the degree
of freedom ri(t) are therefore

ṙi(t) = −µri(t) + 4
∫ t

0
dsΓD (B(t, s))R(t, s) [ri(t)− ri(s)] + ξi(t) (3.27)

⟨ξi(t)ξj(t′)⟩ = δij [2Tδ(t− t′) + 2ΓF (B(t, t′))] (3.28)
With the dissipation and fluctuation kernels ΓD, ΓF defined as follows:

ΓD(B(t, t′)) ≡ v2Γ′′
V (B(t, t′))

ΓF (B(t, t′)) ≡ v2Γ′
V (B(t, t′)) + a2Γ′

A(B(t, t′))
(3.29)

The equations for the response, the correlation and the mean squared displacement
finally read:

∂tR(t, t′) = −µR(t, t′) + 4
∫ t

0
dsΓD (B(t, s))R(t, s) [R(t, t′)−R(s, t′))] + δ(t− t′)

(3.30)
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∂tC(t, t′) = −µC(t, t′) + 4
∫ t

0
dsΓD (B(t, s))R(t, s) [C(t, t′)− C(s, t′)]

+ 2TR(t′, t) + 2
∫ t′

0
dsΓF (B(t, s))R(t′, s)

(3.31)

1
2

dC(t, t)
dt = −µC(t, t) + T + 2

∫ t

0
dsΓD(B(t, s))R(t, s) [C(t, t)− C(s, s) +B(t, s)]

+ 2
∫ t

0
dsΓF (B(t, s))R(t, s)

(3.32)

1
2∂tB(t, t′) = −µ2 (C(t, t)− C(t′, t′) +B(t, t′)) + T

+ 2
∫ t

0
dsΓD(B(t, s))R(t, s) [B(t, s) +B(t, t′)−B(s, t)]

+ 2
∫ t

0
dsΓF (B(t, s)) [R(t, s)−R(t′, s)]

(3.33)

The equilibrium case [70] is recovered for a = 0. The correlator of the solenoidal field
enters into the expression of fluctuation kernel ΓF , but not into the dissipation kernel
ΓD. This is a consequence of the nonequilibrium nature of Eq. (3.18).

To proceed further, these equation can be integrated numerically, as was done for
the p spin with transverse transverse forces. In the presence of a solenoidal field,
τ < 1, it would be interesting to see how the dynamics changes in the region for
mc(τ) < m < 1, where there saddles are exponentially abundant, and minima are not.
We speculate that forms of chaotic behavior might arise in this situation, and that the
study of the statistics of the single particle trajectories in Eq. (3.27) and the correlation
function C(t, t′) might capture this property.

3.4 Outlook

In this chapter we provided a first test of the dynamics with transverse forces in a
many body, disordered system, the spherical p-spin glass model. We interpret the fact
that the temperature at which dynamical ergodicity breaking occurs is not shifted as a
reflection of the fact that the transverse force dynamics accelerates the barrier crossing
rate through a prefactor of the Arrhenius law, as we saw in Section 2.4. On the
other hand in the ergodic phase, transverse forces maintain an edge over equilibrium
dynamics. Our analysis in perturbation theory suggests that this is due to the fact
that cross correlation conspire at short times to accelerate relaxation. In the spherical
p-spin, the evolution of the off-diagonal elements of C represent the new dynamical
pathway unlocked by transverse forces. What are these new dynamical pathways in
systems of interacting particles, which are free from their spherical constraint, and
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what quantity can we measure associated to them? In the following chapter, we start
tackling this question by looking at the mean field theory of simple liquids.

Contributions from Chapter 3

• We consider the dynamics of the mean field p-spin spherical model with
transverse forces. The transverse forces are implemented by asymmetri-
cally coupling two replicas of the same model with a coupling strength γ,
following Ichiki and Ohzeki [208].

• Using a path-integral approach we derive effective dynamical equation for
the response and the spin-spin correlation matrices R(t, t′) and C(t, t′).

• The dynamical equations are studied both numerically, through direct in-
tegration, and analytically, through an accidental fluctuation dissipation
theorem.

• We find that the system has a dynamical temperature Td(γ), below which
ergodicity is broken and dynamical arrest occurs. Td(γ) has the same value
as in equilibrium, Td(γ) = Td(0).

• In the ergodic phase, T > T (γ), we find that transverse forces reduce
the relaxation time necessary to witness the decay of C(t, t′). Using a
perturbative approach, we show that the acceleration at moderate values
of γ is given by a rescaling of the relaxation time, τα(γ) ∼ τα(0)/(1 + γ2).

• As a work in progress, we are considering the dynamics of a particle in high
dimensions evolving under the action of a confining harmonic potential, a
random Gaussian potential, and a random solenoidal force at finite tem-
perature. Using a path integral formalism, we derive dynamical equations
for the response and correlation functions and the mean squared displace-
ment. These equation constitute the starting point for further analyzing
these model and its different phases.
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In this Chapter we explore the sampling efficiency of transverse forces in a widely
used model for structural glass formers, the binary Kob-Andersen mixture. We nu-
merically implement an overdamped Brownian dynamics with transverse forces, and
measure the increase in the longitudinal diffusion constant produced by transverse
forces as a proxy of the reduction of the relaxation time of the system. We find that
transverse forces maintain an edge over equilibrium dynamics and that, quite surpris-
ingly, the sampling speedup varies non monotonically with the temperature, decreasing
as the system becomes more glassy. We characterize the dynamical pathways generated
by transverse forces studying the odd diffusivity of the system, a transport coefficient
unlocked by the nonequilibrium nature of transverse forces. The behavior of the longi-
tudinal and odd diffusion constants in the glassy regime supports the picture of particles
being driven by transverse forces in a swirling motion inside the cage formed by their
local neighbours.
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We further address the question of how transverse forces perform in a finite-dimensional,
structural glass model, by means of numerical simulations. We consider the Kob-
Andersen model, which was originally introduced in [159, 160, 161, 162] to test the
Mode Coupling theory of the glass transition, a microscopic theory for supercooled
liquids, to be addressed later in the thesis. This task was also pursued in [90, 38, 39].
While the seminal papers on the Kob-Andersen mixture addressed the Hamiltonian
dynamics of the model, its equilibrium Monte Carlo [35] and overdamped Langevin
dynamics [90] have also been extensively studied. The Kob-Andersen model has thus
been instrumental in understanding the behavior of structural glasses. A non exhaus-
tive list of applications of this model includes aging [163], the response to an external
shear [24], the study of dynamical susceptibilities [27] and novel algorithmic tech-
niques [219, 212] for the preparation of stable glassy states. Variants of this model
have also been employed in the study of active glassy systems [186, 77, 76].

The Kob-Andersen model consists of a three-dimensional mixture of two species of
particles, labelled A and B respectively, with the interaction potential given by

Vαβ(r) = 4εαβ
[(
σαβ
r

)12
−
(
σαβ
r

)6
]
θ(2.5σαβ − r) (4.1)

with α, β ∈ {A,B} and θ(x) the Heaviside function. The binary nature of the system
allows to explore its dynamics across a wide range of temperature, while avoiding
crystallization. The number ratio of particles of type A with respect to particles of
type B is 80 : 20. The quantity εAA = 1 sets the unit of measure of the energy, while
the other energy scales are εAB = 1.5 and εBB = 0.5. Lengths are measured in units
of σAA = 1. The other values of the interaction range being σAB = 0.8, σBB = 0.88.

The transverse force dynamics for this model reads

ṙαi (t) = µ0(1 + γA)Fαi +
√
kBTµ0ξi(t)

Fαi ≡ −
∑
j ̸=i

∑
β=A,B

∇iV (|rαi − rβj |)
(4.2)

with ξαi (t) a Gaussian white noise with zero mean and correlations ⟨ξαi (t) ⊗ ξβj (t′)⟩ =
1δ(t − t′)δijδαβ. Temperature is measured in units of ϵ/kB, and the time is measured
in units of σ2

AA/µ0ϵ.

4.1 On the choice of A in three dimensions

For a concrete numerical implementation, we need to specify the values of the entries
of the matrix A. For concreteness, we control the strength of the nonequilibrium drive
through the parameter γ while imposing the condition that the Frobenius norm of A
is unity, namely √∑

i,j

A2
ij = 1. (4.3)
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Under this condition, the matrix A reads

A =

 0 A12 A13
−A12 0 A23
−A13 −A23 0

 (4.4)

with
√
A2

12 + A2
13 + A2

23 = 1. We now show that upon a suitable set of rotations of
coordinates the matrix A can be recast in a simpler form. Indeed, if R is an orthogonal
matrix representing a rotation in three dimensions, i.e. det(R) = 1 and RTR = 1, then
applying R to both sides of Eq. (4.2) yields (we drop here, without loss of generality,
the index encoding the particle type)

ṙ′
i = µ0

(
1 + γA′

)
F′
i +

√
2µ0Tξ

′
i (4.5)

where we have defined r′
i ≡ Rri, F′

i ≡ RFi, ξ′
i ≡ Rξi and A′ ≡ RART . The dynamics

in Eq. (4.5) is the same dynamics as Eq. (4.2), in a rotated reference frame. The force
F′
i is still a central force in the rotated reference frame. Using Einstein summation

convention, we have
F ′
i,a =

∑
j

Rab∂ri,b
V (|ri − rj|)

=
∑
j

Rab
∂ri,b
∂r′

i,c

∂r′
i,c
V (|ri − rj|)

=
∑
j

RabR
T
bc∂r′

i,c
V (|r′

i − r′
j|)

=
∑
j

∂r′
i,a
V (|r′

i − r′
j|),

(4.6)

and the noises ξ′
i have the same statistics as the noises ξi:〈

ξ′
i,a(t)ξ′

j,b(t′)
〉

= Raa′Rbb′ ⟨ξi,a′(t)ξj,b′(t′)⟩
= Raa′Rbb′δijδa′b′δ(t− t′)
= δijδabδ(t− t′),

(4.7)

The matrix A′ is still an antisymmetric matrix satisfying Eq. (4.3). Without loss of
generality, we can take for A the following explicit form:

A ≡

0 −1 0
1 0 0
0 0 0

 . (4.8)

which is mathematically similar to A in Eq. (4.4) up to a rotation R = Rx(θ)Rz(ϕ), with
Rx(θ), Rz(ϕ) rotation around the x and z axis respectively, satisfying tan(ϕ) = −A23

A13
,

tan(θ) = − 1
A12

√
A2

13 + A2
23. Note that for a nonzero matrix A the system’s dynamics

is no longer isotropic. It is invariant only by rotation generated by the matrix A in
Eq. (6.2). We identify the plane left invariant by this rotations as the x-y plane.
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4.2 Calibration

We simulate the Kob-Andersen mixture under the dynamics given by Eq. (4.2), with the
matrix A given by Eq. (6.2), in a cubic box of size L = 9.4σAA with periodic boundary
conditions. Eq. (4.2) is integrated numerically using the Heun [187] algorithm: the
position of the particle at time t + ∆t is predicted using an intermediate step r∗

i (t),
according to the following procedure

r∗
i (t) = ri(t) + ∆t(1 + γA)Fi({rj(t)}j=1...N) +

√
2T∆twi(t)

ri(t+ ∆t) = ri(t) + ∆t
2
[
Fi({rj(t)}j=1...N) + Fi({r∗

j(t)}j=1...N)
]

+
√

2T∆twi(t).
(4.9)

The error introduced by this scheme is of order ∆t2. The entries of the three-dimensional
vector wi(t) are independent Gaussian random numbers of mean 0 and unit variance.
These numbers can be generated in a computer using random numbers uniformly dis-
tributed in the unit interval (0, 1) through the Box-Muller transform [49, 6]. Note
that for the algorithm to be unbiased, the random vector wi(t) is used both in the
intermediate and final updates.

The largest computational cost of the numerical integration comes from the evalua-
tion of the conservative force Fi. We reduce this cost by employing a Verlet neighbour
list [252, 6].

We first calibrate our numerical integration scheme by looking at the structure
factor for the particle of species A, S(q), defined as the Fourier transform of the density-
density correlation of the system [124]

S(q) ≡ 1
NA

NA∑
i,j=1
⟨eiq·[rA

i −rA
j ]⟩ (4.10)

where the brackets ⟨. . .⟩ denote an average over the Boltzmann distribution ρB. Fig. 4.1
compares S(q) at two different temperatures, for γ = 0 and γ = 8, the largest value of γ
used for long-time numerical integration. The agreement between the curves obtained
with the equilibrium and the nonequilibrium dynamics is a demonstration of the fact
that the steady state of Eq. (4.2) is indeed the Boltzmann distribution ρB. For a fixed
value of γ, the agreement of the structure factor with its equilibrium counterpart is
used to determine, by trial and error, the largest value of ∆t that can be used before
observing sensible deviations from the equilibrium case.

A direct inspection of the spectral gap of a many-body interacting system like the
Kob-Andersen model is out of reach, whether numerically or analytically. To estimate
the speedup of the sampling, we thus use the mean-squared displacement for particles
A, ∆r2(t),

∆r2(t) ≡ 1
NA

NA∑
i=1
⟨
[
rAi (t)− rAi (0)

]2
⟩. (4.11)

Its temperature evolution is shown in Fig. 4.1(b) at equilibrium. As the system is
cooled down, the particles pass from a purely diffusive motion throughout the whole
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Figure 4.1: (a) Structure factor for particles of type A, at two different temperatures
for γ = 0 (coloured lines) and γ = 8 (dashed lines). (b) Mean squared displacement
for the large particles as a function of time, for γ = 0.
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Figure 4.2: Mean-squared displacement of the A particles at T = 0.8 for various values
of γ.

observation time to a two-step glassy dynamics below the onset temperature near
T ≈ 1.0. Here, the mean-squared displacement grows diffusively up to a plateau,
which extends for several decades in time. This regimes corresponds to the dynamics
of particles trapped inside the cage formed by their local neighbours. At longer times,
spatial rearrangement of the particles allow for the escape from the cage: the plateau
is subsequently left to enter a long time diffusive regime, where

lim
t→∞

∆r2(t) = 6D(γ, T )t. (4.12)

Here D(γ, T ) is the diffusion constant of the system, which depends on the strength of
the nonequilibrium drive and on the temperature.

In Fig. 4.2, we demonstrate that the introduction of transverse forces accelerates
the dynamics of the system. This is done by plotting the mean squared displacement
∆r2(t) at T = 0.8 for various values of γ. We clearly see that transverse forces enhance
the diffusion of the particles in the system, and that increasing the strength of the
driving increases the speedup.

In this calibration section, we have numerically demonstrated that transverse forces
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Figure 4.3: (a) Diffusion constant D(γ, T ) normalised by its equilibrium value at
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as a function of T−1 for various values of γ. (b) Same as (a) using a linear scale to
concentrate on the glassy regime below T = 1.0. The black dashed line corresponds to
the equilibrium efficiency.

preserve the Boltzmann distribution and speed the dynamics up, enhancing the diffu-
sion of the particles. We now address how the speedup depends on temperature, and
how it behaves as we enter in the glassy regime.

4.3 The behavior of the speedup with temperature

To quantify the speedup provided by transverse forces, we extract the diffusion con-
stant, D(γ, T ), from the long-time limit of the mean-squared displacements, see Fig. 4.3(a).
At fixed γ, there exists a temperature near T ∗ ≈ 100 that maximizes the increase of
the diffusion constant.

At high temperatures, interactions (including chiral ones) are smeared out by ther-
mal noise which degrades the efficiency. The drop of acceleration as the temperature is
lowered can be rationalized by the fact that the energy landscape remains unaffected
by the transverse forces: when the supercooled regime is entered more deeply, parti-
cles spin along circular trajectories within their local cages. Short time trajectories
presenting circular motion are shown in Fig. 4.4(a,b). This local motion affects only
marginally the cage-breaking process. These two opposite trends account for the ex-
istence of an acceleration maximum. The enhancement of the diffusion constant in
chiral systems was observed in systems with nonreciprocal interaction [20], or under
the influence of an external magnetic field [145], in the dilute phase, and in [77] a non-
monotonous behavior for the diffusion constant was observed in systems of dense chiral
active Brownian particles. The difference of our work with respect to ones mentioned
above is the fact that the Boltzmann distribution is preserved in our system and that,
at the same time, we explore regimes where the dynamics is considerably slow.
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Figure 4.4: (a) Rendering of a short trajectory for a few particles without any trans-
verse force at T = 0.8. (b) Same with transverse forces which induce circular trajecto-
ries.

In the next Section, we quantify the swirling motion by means of the odd diffusion
constant.

4.4 Odd diffusion

To support the picture of a swirling motion inside a local cage we measure the odd
diffusivity of the particles A. Odd diffusion is a form of transport which is absent in sys-
tem with equilibrium dynamics due to Onsager’s reciprocity relations. For system out
of equilibrium, it manifests itself in the form of a nonzero off-diagonal, anti-symmetric
part of the diffusion tensor. Physically, this detects the presence of chiral, swirling
motion, and the presence of fluxes perpendicular to concentration gradients arising in
the system. At the microscopic level, a Green-Kubo relation, derived in [125] identifies
the odd diffusion as the time integral of the anti-symmetric part of the velocity-velocity
autocorrelation tensor. Following this approach, we have

D(γ, T ) ≡ 1
NA

NA∑
i=1

∫ +∞

0
dt⟨ṙAi (t)⊗ ṙAi (0)⟩ = D(γ, T )

3 1 + D⊥(γ, T )
3 A, (4.13)

where D(γ, T ) is the longitudinal diffusion constant used to study the efficiency of the
system, and D⊥(γ, T ) is the odd diffusion constant. For particles of type A, it reads

D⊥ = 1
2NA

NA∑
i=1

∫ +∞

0
dt ⟨ẏi(t)ẋi(0)− ẋi(t)ẏi(0)⟩ . (4.14)

By symmetry, D⊥ vanishes for an equilibrium dynamics, and its value usefully quantifies
the circular motion shown in Fig. 4.4(d). For example, in the limiting case of a particle
trapped in a harmonic well, we showed in Chapter 2 that D⊥ = −µγT , with µ the
mobility of the particle.

The temperature dependence of D⊥ for our simulated system is shown in Fig. 4.3(a)
for different values of γ. Its absolute value increases with γ. At fixed γ, the odd
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Figure 4.5: Behavior of the ratio D(γ, T )/Tγ measured for T = 100 as a function of
γ. For large values of γ, we see the scaling D(γ, T ) ∼ γ.

diffusion starts from 0 at high T : as thermal fluctuations wash out interactions, they
also suppress particles’ chiral motion, which is induced by transverse forces. The
modulus of D⊥ rises then steeply as a function of T−1 from 0 to a finite value near T ∗.
As the system enters its slow dynamical regime, D⊥ settles to a finite value as shown
in the inset of Fig. 4.3(b). Interestingly, the observed behavior in the arrested glass
phase, where it is presumably dominated by the in-cage circular motion created by
the transverse forces, agrees with the predictions for the harmonic well. This contrasts
with the translational diffusion coefficient which changes by orders of magnitude in the
supercooled liquid, and vanishes in the glass.

4.5 Acceleration at large γ

How does the speedup behave asymptotically, in the limit of large γ? Fig. 4.5 addresses
this question by showing the behavior of the ratio D(γ,T )

γT
as a function of γ, evaluated

at T = 100. For large values of γ this quantity reaches a plateau, signaling the
scaling D(γ, T ) ∼ γ, analogous to the one found for the double-well problem studied
in Chapter 2, and by contrast to the naive scaling D(γ, T ) ∼ γ2 that would have been
guessed using the analysis of the escape rate in Chapter 2.

The scaling discussed here holds upon using physical units of time. In practical
implementations, large values of γ produce numerical errors that impede a satisfying
convergence to the Boltzmann distribution. Depending on the numerical integration
scheme used, an optimal value of γ is expected to exist when the efficiency is measured
in units of CPU time.
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4.6 Conclusion and outlook

We found that the acceleration provided by transverse forces in a dense interacting
system strongly depends on temperature, which comes as a surprise. The acceleration
departs from a simple rescaling of the time, due to both interactions and emerging
glassiness, which also lead to non-trivial asymptotic scaling with γ. In the glassy
phase, the picture unveiled by our exploration is the one of particles swirling in the
cage of their local neighbors, the driving injected by transverse forces being too much
’uninformed’ about the structure of the system to provide a significant gain.

Can we rationalize the results obtained nuemrically about the efficiency and the
transport properties of dense liquids with transverse forces? In the next two Chapters,
we will resort to approximate theories of the glass transition to answer this question.

Contributions from Chapter 4

• We numerically integrate the overdamped Langevin dynamics of the Kob-
Andersen mixture, a widely used glass-former, with transverse forces.

• We demonstrate the correct sampling of the Boltzmann distribution at
finite γ, and witness the speedup provided by transverse forces, probed by
looking at the diffusion of the particles in the liquid.

• We measure the diffusion constant D(γ, T ) as a function of the tempera-
ture, and we use it to study the efficiency of transverse forces, defined as
D(γ, T )/D(0, T ).

• We find a surprising nonmonotonous behavior for the efficiency of trans-
verse forces. Starting at high temperatures, the efficiency reaches a maxi-
mum in the liquid, and then decreases as the system enters the regime with
glassy dynamics.

• We characterize the pathways unlocked by transverse forces by measuring
the odd diffusion constant D⊥(γ, T ), unveiling the swirling motion of the
particles.

• We find that the D(γ, T )/T starts from 0 at high temperatures, and then
rises steeply to a constant value as the temperature is lowered. The steep
rise happens around the same temperature of maximal efficiency.

• We assess the asymptotic scaling of the efficiency in the limit of large
driving. When γ → +∞, D(γ, T ) ∼ γ. This scaling is different from the
one guessed using a time rescaling argument, in the spirit of Chapter 2.1.

• Our study suggests that the dynamical pathways unlocked by transverse
forces collapse onto closed orbits as the system becomes more glassy, giving
rise to the picture of particles swirling inside the cages formed by their local
neighbors.
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In this chapter we address the efficiency of transverse forces in a mean field simple
liquid, where the disorder is not quenched, as for spin glasses, but self-induced by the
amorphous structure of the system. We develop a dynamical mean field theory for
simple liquids with transverse forces. The mean field limit is achieved by sending the
space dimensions to infinity, while properly rescaling the number density. We quantify
the acceleration in terms of the diffusion coefficient of the system, in particular in the
vicinity of the glass transition, where the dynamics gets arrested. We also unravel the
presence of odd transport coefficients (odd diffusivity, odd viscosity and odd mobility)
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and study their behavior close to dynamical arrest. Our analysis sheds light on the
nature of the dynamical pathways followed by the liquid, and how they evolve as we
approach the phase with broken ergodicity.
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In this chapter, we look at the efficiency of transverse forces in a mean field, dense
liquid approaching the glass transition. In this system the disorder is self-induced by its
own structural and dynamical properties, rather than being due to random quenched
interactions as it was the case for the p-spin studied in Chapter 3.

While the physics of dense liquids approaching the glass transition remains a puz-
zle in finite dimensional systems [235, 47], in the mean field limit a more complete
level of understanding is now available [61, 216]. For liquids, the mean field condition
can be implemented [98, 169] by sending to infinity the number of spatial dimensions
of the system, while properly rescaling the particle density so that the average num-
ber of neighbors per particle grows linearly with the dimension. In this limit, the
dynamics of the system can be analytically studied [184, 3, 4, 177], and expressions
for transport coefficients such as the diffusion constant and the viscosity can be ob-
tained. For equilibrium dynamics, below a dynamical transition temperature, Td, the
diffusion constant vanishes, signalling a dynamical ergodicity breaking. In mean-field
this dynamical transition can be inferred from a study of the thermodynamics of the
system [190, 217, 216], as it corresponds to the temperature below which infinitely
long-lived metastable glassy states appear [197, 94], a situation analogous to the one
observed in the p-spin in Chapter 3.

The theoretical framework developed to obtain the aforementioned results makes
liquids in high dimension a good candidate to obtain analytical insights on the perfor-
mance of transverse forces and their transport properties. We develop here a dynamical
mean field theory for liquids with transverse forces, and use the diffusion constant to
probe the speedup obtained by the nonequilibrium drive. The temperature Td at which
the diffusion constant vanishes and the dynamical glass transition occurs is unaffected
by the presence of transverse forces, which is in line with what was found for the p-spin,
and with the idea that the infinite-dimensional transition is fully encapsulated in the
equilibrium distribution preserved by the transverse forces.

On the physics side, we saw in Chapter 4 that transverse forces give rise to odd
diffusivity, but our analytical effort allows to probe also other form of odd transport
(mobility [224] and viscosity [13]). These coefficients usually quantify the departure
from equilibrium dynamics and explain how the relaxational dynamics is driven by
nonequilibrium currents, downto the dynamically arrested phase.

The spirit of the dynamical mean field theory consists in tagging a properly chosen
degree of freedom of the system, while treating the other ones as a bath in which the
tagged degree of freedom evolves. One thus obtains a generalized Langevin equation
for the tagged degree of freedom, with memory kernels that describe the effect of the
surrounding, coarse-grained bath. The infinite dimensional limit is then exploited to
express these memory kernel in a self consistent manner, typical of the mean field
approximation, as functional of the dynamics of the tagged degrees of freedom.

To obtain the aforementioned generalized Langevin equation, we resort to a projec-
tor operator formalism. This formalism appears, in a very similar flavour, in the next
chapter, when the mode-coupling theory of liquids with transverse forces is addressed.
As this formalism appears in two non-overlapping community, the one of mode-coupling
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theory and the one of dynamical field theory, We sketch it here briefly, to show the
spirit of the procedure.

5.1 Projection operator formalism

In this Section we review, following [227, 254] from a general standpoint the projection
operator formalism introduced by Mori and Zwanzig [262]. Consider a generic observ-
able O(t) for a physical system evolving under a deterministic, or stochastic dynamics,
and suppose that the evolution of O(t) is governed by a linear operator L,

∂tO(t) = LO(t) (5.1)

with the initial condition O(0) = O. A formal solution of Eq. (5.1) is then

O(t) = e LtO (5.2)

for stochastic dynamics, L is a time dependent quantity, and Eq. (5.2) would involve
a time ordered integral in the exponential. We will deal with the details of this for-
mulation when dealing with the dynamical mean field theory. Here, for illustration
purposes, we assume that L is time independent.

Eq. (5.2) in the present form, is not very informative. We thus want to derive an
effective equation for the observable O(t). To do so, we introduce an operator P :

P . . . ≡ ⟨O∗ . . .⟩⟨O∗O⟩−1O. (5.3)

From a mathematical standpoint, the average ⟨. . .⟩ implements a scalar product in the
Hilbert space of the observable O. From a physical standpoint, it is usually an average
over the steady state distribution, or some constrained version of the latter, as is the
case for the dynamical mean field theory. For example, if the steady state distribution
of the system of interest has the Boltzmann form ρB(rN), with rN the position of the
N particles that constitute the system, a possible choice is ⟨. . .⟩ =

∫
drN . . . ρB(rN).

From Eq. (5.3), we see that P2 = P . P is thus an operator that projects any
quantity along the observable O. The projector operator P is accompanied by its
orthogonal counterpart, Q ≡ 1− P .

Another useful tool is the Dyson identity

e Lt = e QLt +
∫ t

0
dτ e L(t−τ)PL e QLτ (5.4)

which can be verified by taking a time derivative on both sides.

We can now take the time derivative of Eq. (5.2) and obtain

∂tO(t) = e Lt(P +Q)LO

= e LtPLO + e QLtQLO +
∫ t

0
dτ e L(t−τ)PL e QLτQLO

(5.5)
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Using the definition of P in Eq. (5.3) and the fact that Q e LQt = Q e QLQt, we can
define a frequency term ω, a memory kernel K(t) and a stochastic force f(t) as

ω ≡ −⟨OLO⟩⟨O∗O⟩−1

K(t) ≡ ⟨OLQ e QLτQLO⟩⟨O∗O⟩−1

f(t) ≡ e QLQtQLO,
(5.6)

so that the effective dynamics for O(t) reads

∂tO(t) = −ωO(t) +
∫ t

0
dτK(τ)O(t− τ) + f(t). (5.7)

The memory kernel K(t) involves the time-correlation of LO projected in the space
orthogonal to O. The dynamics governing this time correlations involves only the
degrees of freedom belonging to the space orthogonal to O, due to the presence of
the operator e QLQt. The random force f belongs to the space orthogonal to O, since
Pf(t) = 0. Eq. (5.7) is thus an effective dynamics for O, where the effect of the degrees
of freedom belonging to the space orthogonal to O have been integrated into a memory
kernel and a stochastic force.

From Eq. (5.7) we can obtain an equation for the correlation function C(t) ≡
⟨O∗(0)O(t)⟩. By observing that the contribution from the stochastic force is 0, since
f(t) belongs to the space orthogonal to O, we get

∂tC(t) = −ωC(t) +
∫ t

0
dτK(t− τ)C(τ) (5.8)

While the frequency ω can be computed exactly given the microscopic details of the
dynamics, i.e. from the knowledge of L, computing the memory kernel K and obtain-
ing the full statistics of the stochastic force f(t) require resorting to approximations
schemes, that depend on the model under consideration. For example, in the case of a
massive tracer evolving in a bath of light solvent molecules (either passive [250], or ac-
tive [239]), it may happen that there exists a separation of timescales. In Appendix E,
we address this kind of situation for a passive tracer in a bath of active chiral particles.
In the case of the dynamical mean field theory, the infinite dimensional limit allows
for substantial steps forwards, that are described in this chapter. In finite dimensions,
when O encodes the density fluctuations of the system, an approximation schemes such
as the mode-coupling approximation are usually employed. A mode-coupling theory
for transverse forces is developed in the next chapter.

The above general discussion concludes our review of the projection operator formal-
ism, which is now put to work in studying the dynamics of liquids in large dimensions.

5.2 Equations of motion

Our starting point is an overdamped Langevin dynamics in the presence of transverse
forces for a system of interacting particles with positions Ri in a space of dimension d:

ζṘi = −(1+ γA)∇U + ξ(t), (5.9)
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where U = ∑
i<j v(Ri(t) − Rj(t)), with potential v being pairwise and spherically

symmetric; ξ is a Gaussian white noise with correlations ⟨ξ(t)⊗ ξ(t′)⟩ = 2ζT1δ(t− t′),
where ζ is the friction coefficient. As in the equilibrium case examined in [3], we
will focus on the dynamics of the displacements ui(t) ≡ Ri(t)− Ri(0) with respect to
the initial positions at t = 0. We impose that the Frobenius norm of A is ||A||2F =∑
i,j A

2
ij ∼ d, so that γ alone controls the intensity of the nonequilibrium drive. For

convenience we assume that the spatial dimension d is even, and choose the following
form of the matrix A:

γA ≡
d/2⊕
α=1

Γ (5.10)

with Γ ≡ γ

[
0 −1
1 0

]
a 2×2 matrix. There is no loss of generality in choosing this form,

since any antisymmetric matrix of even dimension γA, with a spectrum {±iλk}k=1,...,d/2
can be rewritten via an orthogonal transformation in a block form analogous to the
one of Eq. (5.10), with the γ’s replaced by γλk in each block. As will become clear
in the course of the derivation, allowing for λk ̸= 1 does not alter the general results
discussed in the following sections (but it would require a minor alteration of some
explicit formulas).

Due to the structure of A it is convenient to decompose the vector ui = ⊕d/2
α=1 ui,α

ζu̇i,α(t) = (1+ Γ) · Fi.α(t) + ξi,α(t), (5.11)

where for a given d-dimensional vector x we have introduced its components xα =
(x2α−1, x2α)T ≡ (x(1)

α , x(2)
α )T , a set of d/2 two-dimensional vectors containing the direc-

tions that affect each other non reciprocally via the transverse force. By construction
it follows that x = ⊕d/2

α=1 xα.

We first discuss the scaling of the various parameters with spatial dimension d so
that the resulting d→∞ dynamics retains interesting many-body features. First, we
recall the specifics of the large d limit of equilibrium dynamics. As in finite dimensional
models, each particle interacts with typically d neighbors. The notion of neighbor
makes sense when the range ℓ of the pair interaction potential is finite, as assumed here.
Then the typical number of neighbors per particle is ρVd(ℓ) where Vd(ℓ) = πd/2

Γ(d/2+1)ℓ
d

is the volume of the interaction sphere. As d → ∞ we want to maintain ρVd(ℓ) of
order d1. Then, to ensure that the energy is extensive in the number dN of degrees of
freedom, the pair potential v(r) needs to admit the following scaling behavior,

v(r) ≡ v(h), h = d
(
r

ℓ
− 1

)
, (5.12)

where v(h) remains finite as d → ∞. This implies that the forces scale as v′(r) ∼
dv′(h) ∼ d. On the other hand, the displacement ∆r ≡ |r(a)

0 + u(a)| − r0 of a given
particle is of order d−1, as h needs to be of order unity. It follows then from the
expansion ∆r ≈ r̂ · u + u2

2r0
that u(a)

µ ∼ d−1. To keep all the terms of Eq. (5.11) of the
same order in d, we need to scale the friction as ζ = ζ̂d2. Finally, we need to discuss
the main new element in Eq. (5.11), i.e. the transverse forces. With our choice (5.10)
of matrix A, in order for these forces to act in a nontrivial yet non singular way, we
need to keep γ fixed as d→ +∞.
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5.3 One-particle process

We consider N + 1 particles labeled by i = 0, . . . , N and we now proceed to derive
in the infinite dimensional limit an exact equation for a tagged, appropriate degree
of freedom pertaining to particle 0. In an equilibrium setting, the authors of [177]
understood that the proper cavity variable could not be a full d-dimensional position
vector (because the number of degrees of freedom of the cavity cannot be extensive
in d). In our situation, however, we identify the proper degree of freedom to be the
vectors u0,α = (u0,2α−1, u0,2α)T , with α fixing the pair of space directions.

With this identification, we start by writing a Liouville operator L(t) governing the
dynamics of the N + 1 particles:

L(t) ≡
N∑
i=0

d/2∑
µ=1

1
ζ

−(12 + Γ) ·∇i,µU(t) + ξi,α(t) + T∇i,µ

T ·∇i,µ (5.13)

for a given realization of the stochastic forces. Then one can write for a generic vector
xi,µ(t) = U [L](t, 0) · xi,µ, where xi,µ ≡ xi,µ(0) and

U [L](t, 0) ≡ exp
(
T
∫ t

0
dτL(τ)

)
. (5.14)

The operator T is the time ordering operator from left to right, so that ∂tU(t, 0) =
U(t, 0)L(t) [141].

We associate to the Liouvillean operator an irreducible version Lirr:

Lirr(t) ≡ L(t)− δL(t),

δL(t) ≡ 1
ζ

−(12 + Γ) ·∇0,αU(t) + ξ0,α(t) + T∇0,α

T · P ·∇0,α
(5.15)

where the projection operator P is defined by

Px(t) ≡
〈∫

dr⊥
0
∏
i>0,µ dri,µe−βUx(t)∫

dr⊥
0
∏
i>0,µ dri,µe−βU

〉
ξ0,...,ξN

≡ ⟨x(t)⟩0,
(5.16)

where dr⊥
0 ≡

∏
µ ̸=α dr0,µ indicates integration over all the component of particle 0 with

the exclusion of the pair of tagged directions α. The average ⟨· · · ⟩ξ0,...,ξN
≡ ⟨. . .⟩0 is an

average over realizations of the noise of all the particle and coordinates, including the
tagged one. In short, P averages over all the degrees of freedom except for the tagged
ones.

We now express the force ∇0,αU(t) using the irreducible Liouvillean. To do this,
we exploit the identity

U([L](t; 0) = U([Lirr](t; 0) +
∫ t

0
dτU([L](τ ; 0)δL(τ)U([Lirr](t; τ), (5.17)
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which is a generalization of the Dyson identity written in Eq. (5.4), to write
− (12 + Γ) ·∇0,αU(t) = − (12 + Γ) ·∇0,αU

†(t)

−
∫ t

0
dτU [L](τ, 0)δL(τ)U [Lirr](t, τ) (1+ Γ) ·∇0,αU,

(5.18)

where we defined ∇0,αU
†(t) ≡ U [Lirr](t, 0) ·∇0,αU . We show in what follows that the

first and second terms on the right hand side of Eq. (5.18) are respectively a fluctuating
force and an effective friction. In order to make this identification explicit, we simplify
the term under the integral of Eq. (5.18) into{

U [L](τ, 0)δL(τ)U [Lirr](t, τ)(12 + Γ) ·∇0,αU
}(a)

= β

×
{
(12 + Γ) ·

〈
∇0,αU

†(t− τ)⊗∇0,αU
†
〉

0
· u̇0,α(τ)

}(a)
,

(5.19)

where we recall that u(a)
α is the a-th component of the two dimensional vector uα.

Eq. (5.11) for the coordinate α of particle 0 reads
ζu̇0,α(t) = −(12 + Γ) ·∇0,αU

†(t)

− β
∫ t

0
dτ(12 + Γ) ·

〈
∇0,αU

†(t− τ)⊗∇0,αU
†
〉

0
· u̇0,α(τ)

+ ξ0,α(t).

(5.20)

It is important to realize that so far Eq. (5.20) is exact. This equation expresses the
decomposition of a force into the sum of an effective noise and of a friction term,
as customarily obtained through the projection operator formalism [261]. However,
we shall establish that in the infinite dimensional limit the memory kernel is further
simplified by substituting ∇0,αU

†(t) with ∇0,αŨ(t), the force exerted by the fluid
where the coordinates α of particle 0 have been fixed. To do so we first fully write the
expression of Lirr, with Q ≡ 1− P :

Lirr(t) = 1
ζ

[−(12 + Γ) ·∇0,αU + ξ0,α(t) + T∇0,α]T · Q∇0,α

+
d/2∑
µ ̸=α

1
ζ

[−(12 + Γ) ·∇0,µU + ξ0,µ(t) + T∇0,µ]T ·∇0,µ

+
N∑
i>0

d/2∑
µ=1

1
ζ

[−(12 + Γ) ·∇i,µU + ξi,µ(t) + T∇i,µ]T ·∇i,µ

≡ 1
ζ

[−(12 + Γ) ·∇0,αU + ξ0,α(t) + T∇0,α]T · Q∇0,α

+ L0(t),

(5.21)

from which we see that ∇0,αŨ(t) = U [L0](t, 0)∇0,αU . By using the last line of
Eqs. (5.17, 5.21) we can express the force ∇0,αU

†(t) in terms of a Dyson series
∇0,αU

†(t) = ∇0,αŨ(t)

+
∫ t

0
dτU [L0](t, τ)1

ζ

(12 + Γ) ·∇0,αU + ξ0,α(τ) + T∇0,α

T

· Q∇0,αU [L0](τ, 0)∇0,αU

+ . . .

(5.22)
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We now argue that all the terms of this series excluding the first are sub-leading in
the infinite dimensional limit, provided that this limit is taken for a finite time t. For
example, the second term of the series can be rewritten as

∫ t

0
dτU [L0](t, τ)1

ζ

[
(12 + Γ) ·∇0,αU + ξ0,α(τ) + T∇0,α

]T

·
[
k̃α(τ)−

〈
k̃α(τ)

〉
0

]
,

(5.23)

where k̃(ab)
α (0) ≡ ∑

j>0∇(a)
α ∇(b)

α v(r(ab)
0j )δab. The fluctuations of this term are of order

d3/2. Therefore for finite times the integral scales as 1
d
d3/2 ∼ d1/2, and is sub-leading

compared to the first term of the series which is of order d. Terms of the series of
order n all contain additional powers of the friction coefficient ζ, leading to the scaling
d3/2−n. In conclusion, we can rewrite Eq. (5.20) as

ζu̇0,α(t) = −(12 + Γ) ·∇0,αŨ(t)

− β
∫ t

0
dτ(12 + Γ) ·

〈
∇0,αŨ(t− τ)⊗∇0,αŨ

〉
0
· u̇0,α(τ)

+ ξ0,α(t).

(5.24)

We have thus obtained an effective equation for the degree of freedom u0,α(t), the
coordinates α of the position for particle 0. The force-force correlation can be rewritten
as 〈

∇(a)
0,αŨ(t)∇(b)

0,αŨ
〉

0
=
〈∑
i,j ̸=0
∇(a)

0,αv(r̃0i(t))∇(b)
0,αv(r̃0i)

〉
0

=
〈∑
i ̸=0
∇(a)

0,αv(r̃0i(t))∇(b)
0,αv(r̃0i)

〉
0

= 2
d

〈 d/2∑
µ=1

∑
i ̸=0
∇(a)

0,µv(r̃0i(t))∇(b)
0,µv(r̃0i)

〉
0

= 2
dN

〈 d/2∑
µ=1

∑
i ̸=0
∇(a)

0,µv(r0i)(t)∇(b)
0,µv(r0i)

〉

≡M (ab)(t),

(5.25)

where we have used, in order:

• the fact that force between particle 0 and particle i and the force between particle
0 and particle j are uncorrelated, for i ̸= j, in the large dimensional limit;

• the equivalent roles played by the d/2 blocks;

• the fact that in the large dimensional limit the average ⟨...⟩0,α over the dynamics
with the frozen direction α of particle 0 can be replaced by an average over the
dynamics of the full, unfrozen system, and that such an average can be carried
out for all the N particles of the system.

Moreover, we observe that in the high dimensional limit the force ∇0,αŨ(t) has a
zero average, and its statistics are entirely determined by its second moment. The
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dynamical equation obtained for particle 0 can be generalized to any particle in the
liquid, since they are all identical. The resulting equation reads

ζu̇i,α = −β
∫ t

0
dτ(1+ Γ) ·M(t− τ)u̇i,α(τ) + Ξi,α(t)

⟨Ξi,α(t)⟩ = 0

⟨Ξi,α(t)⊗Ξj,β(t′)⟩ = δijδαβ

[
2Tζ1dδ(t− t′) + (12 + Γ) ·M(t− t′) · (12 + ΓT )

]
.

(5.26)
The memory kernel M(t) encoding pairwise force-force correlations is self-consistently
determined by the dynamics of two interacting particles. The latter can be obtained
from the microscopic dynamics in the same way as in Eq. (5.26). However, we first
observe that the memory kernel at the initial time is completely determined by the
equilibrium properties of the system. Therefore, it has the same expression as its
equilibrium counterpart, and in particular it is diagonal:

M(0) = 12
ρ

d

∫
dr0g(r0)|v′(r0)|2, (5.27)

with g(r) = e−βv(r) the radial distribution function in the infinite-dimensional limit.
The physical simplifying idea that we use to proceed is that a diagonal kernel at initial
times implies, in the large dimensional limit, a diagonal kernel at successive times.
In the following Section, we will derive the equations of motion for the two particle
process under the self consistent assumption of a diagonal kernel M = 1M(t). In this
case the dynamics for the full displacement of particle i in d dimensions reads

ζui(t) = −β
∫ t

0
dτM(t− τ)(1d + γA) · u̇i(τ) + Ξ(t)

⟨Ξi(t)⊗Ξj(t)⟩ = 1dδij
[
2Tζδ(t− t′) + (1 + γ2)M(t− t′)

]
M(t) = ρ

d

∫
dr0g(r0) ⟨̂r(t)v′(r(t))⟩r0

· r̂0v
′(r0),

(5.28)

where the definition of the kernel M(t) comes from an extension by continuity of Eq.
(5.27).

5.4 Two-particle process

5.4.1 General formulation

We consider two particles, which we label 0 and 1, and we focus on the dynamics of
their separation r(t) ≡ R0(t)−R1(t). A derivation analogous to the one performed for
the one-particle process, along the lines of [177], gives:

ζ

2 ṙ = −(1d + γA)̂rv′(r(t))− β

2

∫ t

0
dτM(t− τ)(1d + γA)ṙ(τ) +

√
2Ξ(t)

⟨Ξ(t)⊗Ξ(t′)⟩ = 1d
[
2Tζδ(t− t′) + (1 + γ2)M(t− t′)

]
.

(5.29)
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Equation (5.29) can intuitively be derived from the one-particle process of Eq. (5.28),
singling the force between particles 0 and 1 out of the expression of M . This is a
legitimate operation which yields a negligible correction in the large dimensional limit.

From Eq. (5.29) using Itō calculus one can obtain equations of motion for the
dynamics of the distance r = ||r|| and the unit vector r̂ along r:

ζ

2 ṙ(t) = T (d− 1)
r(t) − β

2

∫ t

0
dτM(t− τ )̂r(t) · (1d + γA)ṙ(τ) +

√
2r̂(t) ·Ξ(t)

ζ

2
˙̂r(t) = −T (d− 1)

r(t)2 r̂(t)− γAr̂(t)v′(r(t))

− β

2r(t)

∫ t

0
dτM(t− τ) ·Π⊥(t) (1d + γA) ṙ(τ)

+
√

2Π⊥(t) ·Ξ(t),

(5.30)

with Π⊥(t) ≡ 1d − r̂(t)⊗ r̂(t) the operator projecting along a direction orthogonal to
r̂(t). At t = 0 the dynamics of r̂ reads

ζ

2
˙̂r(0) = −T (d− 1)

r(0)2 r̂(0)− γAr̂(0)v′(r(0)) +
√

2Π⊥(t) ·Ξ(0). (5.31)

The left hand side of this equations scales as d3/2, while the right hand side contains
terms of order at most d. We therefore conclude that the orientation of the vector r
does not change to leading order in d with respect to its initial orientation. We can
thus assume that r̂(t) = r̂(0) at all times. Then the evolution of r̂(t) in Eq. (5.30)
becomes

ζ

2
˙̂r(t) = −T (d− 1)

r(t)2 r̂(0)− γAr̂(0)v′(r(t))− γβ

2r(t)

∫ t

0
dτM(t− τ)Aṙ(τ)

+
√

2Π⊥(t) ·Ξ(t).
(5.32)

The scaling for the different terms reads as above, and the new term introduced, which
is of order d2 × d−1 = d, remains subleading. This proves self-consistently that, as
was the case in equilibrium, the orientation of the inter particle separation is constant
throughout the dynamics, which was not an a priori expected property due to the
presence of transverse forces. The equation for the interparticle distance reads:

ζ

2 ṙ(t) = −v′(r(t))− T (d− 1)
r(t) − β

2

∫ t

0
dτM(t− τ)r(τ) +

√
2Ξ(t)

⟨Ξ(t)Ξ(t′)⟩ = 2Tζδ(t− t′) + (1 + γ2)M(t− t′)

M(t) = ρΩd

d

∫
dr0g(r0)⟨v′(r(t))⟩r0v

′(r0).

(5.33)

Note that the two-particle process is still an out of equilibrium one, since the noise
and the friction terms do not respect the fluctuation-dissipation theorem. One expects
therefore a different value of the memory kernel M(t) compared to the γ = 0 case.
The analytical determination of M(t) at all times is an open question, even in the
equilibrium case, where progress has been made either by numerical integration or by
a low density expansion [185]. We turn to the latter approach, in order to produce an
expression of M(t) which will be useful in the following sections, where we discuss the
efficiency of the transverse forces.
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5.4.2 Low density expansion of the memory kernel

The main idea is to expand the memory kernel in the form of a perturbative series

M(t) =
∞∑
n=1

M (n)(t), (5.34)

where M (n) ∼ O(ρn) can be self-consistently determined from the two particle process
given by Eq. (5.33), evaluated up to order O(ρn−1). Therefore, the lowest order M (1)

is determined by the process

ζ

2 ṙ
(0)(t) = T (d− 1)

r(0)(t) − v
′(r(0)(t)) +

√
2Ξ(0)(t)〈

Ξ(0)(t)Ξ(0)(t′)
〉

= 2Tζδ(t− t′),
(5.35)

which is the same as the one obtained at equilibrium [185]. Low densities suppress the
action of transverse forces at the level of the two-body process. In particular, one can
consider the case of a linear potential v(r) = ϵ( r

ℓ
−1), for which M (1)(t) was determined

in Ref. [185]. We give here the expression of its time integral M̂ (1) ≡
∫+∞

0 dtM (1)(t),
which will be useful later. It reads

βM̂ (1) = ϕ̂

2
β2(2 + β)
(1 + β)3 , (5.36)

with ϕ̂ ≡ ρVd
ℓd

d
the rescaled packing fraction, and with Vd the volume of a sphere of

unit radius in d dimensions. Below, we will address the issues of the long time limit of
M and of its asymptotic behavior as γ goes to infinity.

5.5 Dynamical arrest

5.5.1 Ergodicity breaking occurs at the same location as in equilib-
rium

The mean field glass transition in fluids can be found by looking at the long time
behavior of M(t). Following the existing literature [115, 216] we split the kernel M
into a decaying part and an asymptotic plateau value at t becomes large: M(t) =
Mf (t) + Mp, with Mf (t → ∞) = 0 and Mp ≥ 0 a constant. A glass transition occurs
when the density or the temperature of the system are such that Mp > 0. In this
Section we will show that this happens at the same parameters as for equilibrium
dynamics.

The plateau value Mp is given by:

Mp = lim
t→∞

M(t) = ρ

d

∫
dr0 ⟨v′(r)⟩ss v

′(r0), (5.37)
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where ⟨. . .⟩ss is an average over the steady state value of the dynamics for the distance
between two particles, given by Eq. (5.29). Such a steady state distribution depends
on the value of Mp, thus yielding a self-consistent relation that can be exploited to
determine the plateau value.

Using the aforementioned decomposition for M(t) the equation of motion for r can
be rewritten as a nonequilibrium dynamics for a particle in d dimensions inside an
effective potential w(r), under the action of a constant Gaussian drift Ξp (induced by
the long time dynamics of M(t) and fluctuating Gaussian noises Ξf , ξ) with eventually
decaying correlations:

ζ

2 ṙ = (1d + γA) ·
[
−∇w(r)− β

2

∫ t

0
dτMf (t− τ)ṙ(τ) + Ξf (t)

]
+
√
Tξ(t), (5.38)

with
w(r) = v(|r|) + β

4Mp [r− r0]2 + Ξp · r, (5.39)

the correlations of the constant random drive Ξp and the time dependent noises Ξf (t),
ξ(t) being respectively ⟨ξ(t)⊗ ξ(t′)⟩ = 1dTζδ(t− t′), ⟨Ξf (t)⊗Ξf (t′)⟩ = 1d 1

2Mf (t− t′),
⟨Ξp ⊗Ξp⟩ = 1d 1

2Mp.

We briefly review the equilibrium case (γ = 0) for which we have

ζ

2 ṙ = −∇w(r)− β

2

∫ t

0
dτMf (t− τ)ṙ(τ) + Ξf (t) +

√
Tξ(t). (5.40)

This is an equilibrium dynamics with memory under an external potential w(r). The
equilibrium distribution is the Boltzmann one:

pB(r|Mp,Ξp, r0) ≡
e−βw(r)∫
dre−βw(r) . (5.41)

We note that the steady state distribution depends on the plateau value of the memory
kernel, and it is conditioned on the realizations of the field Ξf and on the initial con-
dition r0. The steady state value of the force appearing in the self-consistent equation
Eq. (5.37) is

⟨v′(r)⟩eq,r0
= 1

(πMp)d/2

∫
dΞpe

−
Ξ2

p
Mp

∫
drpB(r, |Mp,Ξp, r0)v′(|r|). (5.42)

Substitution in Eq. (5.37) yields the desired self-consistent relation. We refer the reader
to Refs. [184, 216] for a detailed discussion of its solution. Here it is sufficient to use
the fact that Eq. (5.37) admits a nonzero value for Mp below a critical temperature (or
above a critical density ρd) Td, meaning that the system is no longer ergodic below Td
(above ρd).

After having reviewed the equilibrium limit, we now return to the γ ̸= 0 case of
interest. The steady state distribution of the process given by Eq. (5.38) is the same
as the equilibrium one. This means that the self-consistent relation given by Eq. (5.37)
yields a nonzero value of Mp for the same critical parameter as in the equilibrium dy-
namics, thus proving the statement that opened this Section. This reflects the fact that
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the transverse force dynamics is constructed to preserve the Boltzmann distribution in
the steady state. Any ergodicity breaking that takes its root in the thermodynamics,
as the one observed in mean field fluids, will be observed also in the presence of trans-
verse forces at the same point as in equilibrium. However, even if the location of glass
transition point is unchanged, it is interesting to observe how the dynamics conspires
to produce this result, and how it differs from its equilibrium counterpart.

5.5.2 A sanity check

The spirit of the dynamical mean-field theory is to integrate out in an exact fashion an
extensive number of degrees of freedom. This integration step transforms the Marko-
vian dynamics into one with memory. From an analysis of the dynamics, it is thus
not easy to see that the steady-state distribution for the non-Markovian process is the
Boltzmann one. We know however that this must be the case, because the integration
can be done at the static level using replicas [216], and we know that in equilibrium,
the analysis of the dynamics [184] confirms the results of the statics. This subsection
may thus seem a somewhat superfluous sanity check, but it is in principle needed. We
want to prove directly the invariance of the steady state distribution of Eq. (5.38). We
express the memory kernel Mf (t) as a sum of exponentials:

1
2Mf (t) =

∑
k

cke
−t/τk , (5.43)

where the ck’s and the τk’s are appropriately distributed [225]. Using this decomposi-
tion, we can rewrite the non-Markovian equation of motion for r as a Markovian one,
at the cost of introducing an extra set of degrees of freedom, yk, coupled to r:

ζ

2 ṙ(t) = −(1d + γA) ·∇w(r) +
∑
k

√
ckβ(1d + γA) ·

[
yk(t)−

√
ckβ [r(t)− r0]

]
+
√
Tξ,

ẏk = − 1
τk

[
yk −

√
ckβ [r(t)− r0]

]
+
√

2T
τk

ηk

⟨ηi(t)⊗ ηj(t′)⟩ = 1dδijδ(t− t′)
⟨ξi(t)⊗ ξj(t′)⟩ = 1dδ(t− t′).

(5.44)

We choose yk(0) to be independent random variables drawn from a Gaussian distri-
bution of variance T for all k. Upon averaging over the Markovian evolution and the
initial condition of the yk variables, Eq. (5.44) is then identical to Eq. (5.38). The
dynamics of yk reads:

yk(t) = yk(0)e−t/τk +
∫ t

0
dτe

− t−τ
τk

[√
ckβ

τk
[r(τ)− r0] +

√
2T
τk

ηk(τ)
]
, (5.45)
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which, after an integration by parts, becomes

yk(t) = yk(0)e−t/τk +
√
ckβ [r(t)− r0]

−
√
ckβ

∫ t

0
dτe

− t−τ
τk ṙ(τ) +

√
2T
τk

∫ t

0
dτe

− t−τ
τk ηk(τ).

(5.46)

Substitution into the equation for r yields

ζ

2 ṙ(t) = −(1d + γA)∇w(r)− β
∫ t

0
dτ
∑
k

cke
− t−τ

τk (1d + γA) · ṙ(τ)

+ (1d + γA) · ν(t) +
√
Tξ(t)

ν(t) ≡
∑
k

√
ckβyk(0)e−t/τk +

√
2ck
τk

∫ t

0
dτe

− t−τ
τk ηk(τ).

(5.47)

The second term on the right hand side is β
2
∫ t

0 dτMf (t − τ)(1d + γA) · ṙ(τ). The
contribution ν(t) is a Gaussian noise whose correlations are given by

⟨ν(t)⊗ ν(t′)⟩ = 1d
∑
k

cke
|t−t′|

τk = 1
21dMf (|t− t′|), (5.48)

and therefore ν(t) = Ξf (t). This concludes the proof of equivalence between Eq. (5.38)
and Eq. (5.44).

To obtain the steady state distribution of the joint process for r and y, we first
rewrite the equation in the following form:

ζ

2 ṙ(t) = −(1d + γA) [∇w(r) + ∇w̃(r, {yk})] +
√
Tξ(t)

yk(t) = − 1
τk
∂kw̃(r, {yk}) +

√
2T
τk

η(t),
(5.49)

where w̃(r, {yk}) = ∑
k

1
2

(
yk −

√
ckβr

)2
and ∂k ≡ ∂

∂yk
. This is an overdamped Langevin

dynamics under the action of an external potential w+ w̃ and transverse forces acting
on the r variables. Therefore, it admits the steady state distribution

pss(r, {yk} |Mp,Ξp, r0) ∝ e−β(w+w(r,{yk}). (5.50)

Upon integrating out the auxiliary variables yk, we obtain

pss(r|Mp,Ξp, r0) = e−βw(r)∫
dre−βw(r) = pB(r|Mp,Ξp, r0). (5.51)

This result implies a self-consistent equation for Mp identical to the one holding in
equilibrium, and therefore an identical glass transition temperature. This maybe does
not come as a surprise given that, at least in infinite dimensions, the glass transition
point can also be found by resorting to equilibrium statistical mechanics methods [216],
and the transverse forces are designed to preserve the equilibrium statistics and ther-
modynamics.
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5.6 Ergodic phase with strong nonequilibrium drive

The calculation of the previous Section has demonstrated that the behavior of the
plateau value of the force-force correlation for transverse forces is identical to the one
for equilibrium dynamics. However, in the presence of transverse forces the two-particle
process at any finite time is different from its equilibrium counterpart, and we therefore
expect M(t) to be affected by the nonequilibrium forces in the ergodic region. The
explicit determination of the memory kernel for arbitrary temperature and density is
out of reach, and already in equilibrium the numerical integration of the equation of
motion and the self-consistent relation is a formidable task [185]. Here, we address the
scaling of the memory kernel M(t) in the limit γ →∞.

The starting point is the dynamics of the interparticle distance:

ζ

2 ṙ(t) = T (d− 1)
r(t) − v′(r(t))

− β

2

∫ t

0
dτM(t− τ)ṙ(τ) + Ξ(t)

⟨Ξ(t)Ξ(t′)⟩ = Tζδ(t− t′) + 1
2(1 + γ2)M(t− t′).

(5.52)

We recall that the memory kernel M(t) is determined from the two-body dynamics
itself, see Eq. (5.33).

We now rescale time, t ≡ γt, and we define the new functions f(t) ≡ f
(
t
γ

)
,

obtaining

γ
ζ

2 ṙ (t) = T (d− 1)
r (t) − v′ (r (t))

− β

2

∫ t
γ

0
dτM (t− τ) ṙ(τ) + Ξ (t)〈

Ξ (t) Ξ
(
t
′)〉 = γTζδ

(
t− t′

)
+ 1

2(1 + γ2)M
(
t− t′

)
,

(5.53)

with M (t) = ρ
d

∫
dr0g (r0) ⟨v′ (r (t))⟩r0

v′(r0). If we now send γ →∞ and keep only the
leading terms, we obtain

ζ

2 ṙ (t) = Ξ (t)〈
Ξ (t) Ξ

(
t
′)〉 = 1

2M
(
t− t′

)
.

(5.54)

Note that in the rescaled units this equation is no longer dependent on γ, and as a
consequence M (t) cannot depend on γ. Using this result, we can determine the scaling

72



Transverse forces
in large dimensional liquids

of the zero frequency mode of the memory kernel, M̂(0):

M̂(0) =
∫ +∞

0
M(t)dt

= 1
γ

∫ +∞

0
M

(
t

γ

)
dt

= 1
γ

∫ +∞

0
M (t) dt ∼ 1

γ
.

(5.55)

We have thus found the large γ behavior of the zero-frequency mode of the memory
kernel. Interestingly, this is the same scaling found for the barrier crossing time in
Chapter 2, and it differs from the γ2 scaling that would have been naïvely guessed
when looking at the escape rate of the particles, as was done in Chapter 2.1.

5.7 Mean-squared displacement and diffusion constant

In this Section, we explore how the transverse forces dynamics influences the diffusivity
of the particles. We are interested in the mean-squared displacement

∆(t) ≡ 1
N

∑
i

〈
[Ri(t)−Ri(0)]2

〉
=
〈
u0(t)2

〉
. (5.56)

In the long time limit we expect diffusive behavior

lim
t→∞

∆(t) = 2dD∥(T, γ)t. (5.57)

Our aim is to obtain an expression for D∥(T, γ). The starting point of our calculation
is the one-particle dynamics (we omit the particle index since they are all equivalent)

ζu̇(t) = −
∫ t

0
dτM(t− τ) (1d + γA) u̇(τ) + Ξ(t), (5.58)

with the noise correlations ⟨Ξ(t)⊗Ξ(t′)⟩ = 1d [2Tζδ(t− t′) + (1 + γ2)M(t− t′)]. In-
troducing the Laplace transform f̂(s) ≡

∫+∞
0 dte−stf(t), we can write the mean-squared

displacement using the Bromwich inversion integral [43]

∆(t) = − 1
4π2

∫ z+i∞

z−i∞

∫ z+i∞

z−i∞
dsds′est+s

′t ⟨û(s) · û(s′)⟩ , (5.59)

with z greater than the real part of all the singularities of the integrand. Applying the
Laplace transform to both sides of Eq. (5.58) and noting that AAT = 1d we get

u(s) =

(
ζ + βM̂(s)

)
1d − γβM̂(s)A(

ζ + βM̂(s)
)2

+
(
γβM̂(s)

)2 ·
Ξ̂(s)
s

≡ K̂(s) · Ξ̂(s)
s

.

(5.60)
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We also need to know the noise correlations in Laplace space, which read

〈
Ξ̂(s)⊗ Ξ̂T(s′)

〉
= 1d

2Tζ + (1 + γ2)
(
M̂(s) + M̂(s′)

)
s+ s′

≡ 1d
C(s, s′)
s+ s′ .

(5.61)

Equation (5.59) now reads

∆(t) = − 1
4π2

∫ z+i∞

z−i∞

∫ z+i∞

z−i∞
dsds′ est+s

′t

ss′(s+ s′)C(s, s′) Tr
[
K̂(s) · K̂T(s′)

]
. (5.62)

Since we are interested in the large time limit, we make the change of variables w ≡ st,
w′ ≡ s′t:

∆(t) = − t

4π2

∫ zt+i∞

zt−i∞

∫ zt+i∞

zt−i∞
dwdw′ ew+w′

ww′(w + w′)C
(
w

t
,
w′

t

)
Tr
[
K̂
(
w

t

)
· K̂T

(
w′

t

)]
.

(5.63)

The diffusion constant is obtained sending t→ +∞:

D∥(γ, T ) =
Tr
[
K̂(0) · K̂T(0)

]
C(0, 0)

2d lim
t→+∞

( 1
4π2

) ∫ zt+i∞

zt−i∞

∫ zt+i∞

zt−i∞
dwdw′ ew+w′

ww′(w + w′) .

(5.64)

Carrying out the computation explicitly yields

D∥(γ, T ) = T
ζ + (1 + γ2)βM̂(0)(

ζ + βM̂(0)
)2

+
(
γβM̂(0)

)2 . (5.65)

This is the central result of this Section. For γ = 0 we obtain the known equilibrium
expression of the diffusion constant:

D∥(0, T ) = T

ζ + βM̂(0)
. (5.66)

The nonequilibrium diffusion constant is always larger than the equilibrium one, D∥(γ, T ) ≥
D∥(0, T ), as long as M̂(0) is equal to or smaller than its equilibrium counterpart. For
large nonequilibrium drives, the zero-frequency mode of the memory kernel scales as
γ−1 (see Sec. 5.6 above), and the diffusion constant grows linearly with γ:

D∥(T, γ →∞) ∼ c(T )γ, (5.67)

with c(T ) a temperature-dependent coefficient.

Concerning the temperature behavior of D∥, two limits are of interest. The first
one is the infinite temperature limit. In this case M̂(0) = 0 and one obtains

D∥(T →∞, γ) = T

ζ
= D∥(T →∞, 0). (5.68)
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Figure 5.1: (a) Ratio between the longitudinal diffusion constant D∥(β, γ) in the pres-
ence of transverse forces and its equilibrium counterpart at γ = 0 for different values γ
of the strength of the nonequilibrium drive, as a function of inverse temperature β. (b)
Odd diffusivity in the presence of transverse forces. In both panels, the memory kernel
used is the one obtained via a low density expansion for the case of a linear potential,
as given in Eq. (5.36).

Since thermal fluctuations dominate over the interactions when T →∞, the transverse
forces fail to accelerate the dynamics, and the nonequilibrium nature of the process
is washed out by the thermal noise. The second limit of interest is for T → Td, the
glass transition temperature. Here M̂(0) diverges and the diffusion constant goes to 0,
signaling dynamical arrest.

To conclude this Section, we explicitly compare D∥(γ, T ) and its equilibrium coun-
terpart in the low density regime for a linear potential, where M̂(0) takes the form
given in Eq. (5.36). The results are shown in Fig. 5.1(a). The efficiency of transverse
forces, defined as the ratioD∥(γ,T )

D∥(γ,0) changes non monotonically with the temperature for
the highest values of γ.

Our investigation of the diffusion constant suggests the following picture: upon
reducing the temperature from the T →∞ regime dominated by thermal noise, trans-
verse forces emerge from thermal fluctuations and accelerate the dynamics. However,
as memory effects become stronger and the glass transition is approached, the enhance-
ment of the diffusion is reduced. We are thus led to the question of what is the effect
of transverse forces in the low temperature regime. In the next Section we show that
they mostly give rise to odd transport coefficients rather than providing a stronger
dynamical speedup.
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5.8 Emergent odd transport

5.8.1 Odd diffusivity

In this subsection we prove, and quantify, the presence of odd diffusion in the infinite
dimensional fluid driven by transverse forces. Odd diffusion manifests itself in the form
of a nonzero off-diagonal, anti-symmetric part of the diffusion tensor. Physically, this
detects the presence of chiral, swirling motion, and the presence of fluxes perpendicular
to concentration gradients arising in the system. At the microscopic level, a Green-
Kubo relation, derived in [125] identifies the odd diffusion as the time integral of
the anti-symmetric part of the velocity-velocity autocorrelation tensor. Following this
approach, we have

D(γ, T ) ≡ 1
N

N∑
i=1

∫ +∞

0
dt⟨u̇i(t)⊗ u̇i(0)⟩ = D∥(γ, T )

d
1+ D⊥(γ, T )

d
A. (5.69)

The conventional longitudinal diffusion constant D∥(γ, T ) given by Eq. (5.65) appears
in the diagonal entries of the diffusion tensor. The anti-symmetric contribution is
proportional to the odd diffusion constant D⊥(T, γ). It is defined as:

D⊥ ≡
1
dN

N∑
i=1

∫ ∞

0
⟨u̇i(t) ·Au̇i(0)⟩

= 1
ζNd

N∑
i=1

lim
z→0
⟨sû(s) ·AΞi(0)⟩

= 1
ζd

lim
s→0
⟨sû(s) ·AΞ(0)⟩ .

(5.70)

In the second equality we have used a representation in terms of the Laplace trans-
form of the displacement ui,α, and in the third equality the fact that all particles are
equivalent. Using Eq. (5.60) and the fact that:〈

Ξ̂(s)⊗Ξ(0)
〉

= 1dT
[
ζ + (1 + γ2)βM̂(s)

]
(5.71)

we obtain
D⊥ = − T

ζd
Tr
[
K̂(0)A

] [
ζ + (1 + γ2)βM̂(0)

]
, (5.72)

with K̂(0) defined in Eq. (5.60). An explicit computation of the trace yields

D⊥ = −Tγ
ζ

βM̂(0) + (1 + γ2)
(
βM̂(0)

)2

(
ζ + βM̂(0)

)2
+
(
γβM̂(0)

)2 , (5.73)

thus proving the presence of a finite odd diffusivity in the system whenever γ ̸= 0.
Upon approaching the glass transition, the odd diffusivity converges to the nonzero
value γ T

ζ
: even when ergodicity is broken and the system is confined in a long-lived

metastable state, a form of odd transport persists, analogous to the swirling motion of
a particle trapped in an harmonic well in the presence of transverse forces [108].

As we shall see now, odd diffusion is not the only emergent odd transport coefficient.
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5.8.2 Odd mobility

Odd mobility [224] is a transport coefficient closely related to the odd diffusivity. In
this subsection we show that its behavior upon approaching the glass transition is
distinctly different from the odd diffusivity as we find that odd mobility vanishes in
the nonergodic phase.

Odd mobility describes the transverse motion of a tracer upon applying a constant
force. Specifically, we consider the case where a constant force Fext is applied at t = 0
on particle 0, which thus assumes the role of a tracer. The system thus evolves under
the action of the operator Lext(t), defined as

Lext(t) = L(t) + 1
ζ

d/2∑
β=1

Fext
β ·∇0,β, (5.74)

with L(t) the evolution operator of the unperturbed system, displayed in Eq. (5.13).
Following a linear response formalism, we have, to first order in Fext,

U [Lext](t, 0) ≈ U [L](t, 0) + 1
ζ

d/2∑
β=1

∫ t

0
dτU [L](t, τ)Fext

β ·∇0,βU [L](0, τ). (5.75)

To obtain the equation of motion of the perturbed tracer in the linear response, we have
to compute U [Lext](t, 0)F0,α. However, we observe that U [L](t, 0)F0,α is translationally
invariant. This implies that only the first term on the right hand side of Eq. (5.75)
contributes to the evolution of F0,α, and therefore

U [Lext](t, 0)F0,α(t) = U [L](t, 0)F0,α +O((Fext)2). (5.76)

The equation of motion of the perturbed tracer in the infinite dimensional limit thus
becomes

ζu̇i(t) = Fext −
∫ t

0
dτM(t− τ)(1d + γA) · u̇i(τ) + Ξ(t), (5.77)

with the noise Ξ(t) and the memory kernel M(t) corresponding to the one of the
unperturbed dynamics in Eq. (5.28). The mobility of the tracer is defined via the
relation

lim
t→+∞

⟨u̇0(t)⟩ = µFext. (5.78)

Applying a Laplace transform to Eq. (5.77), taking the 0-frequency limit and keeping
the leading diverging terms we obtain the following expression for µ:

µ =

[
ζ + βM̂(0)

]
1− γβM̂(0)A[

ζ + βM̂(0)
]2

+
(
γβM̂(0)

)2 ≡ µ∥1+ µ⊥A. (5.79)

For γ = 0 we fall back to the equilibrium case, µ = 1
ζ+βM̂(0)

1 and the Einstein relation
is satisfied, Tµ = D. When γ ̸= 0, the Einstein relation breaks down. Note in
passing that this violation takes a compact form for the longitudinal component of
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Figure 5.2: (a) Longitudinal mobility µ∥ for different values of the strength γ of the
non equilibrium drive, as a function of the inverse temperature β ≡ T−1. (b) Odd
mobility in the presence of transverse forces. In both panels, the memory kernel used
is the one obtained via a low density expansion for the case of a linear potential. Its
expression is given in Eq. (5.36).

the diffusivity tensor, namely D∥ = [(1 + γA)µ]∥. The mobility is composed of a
longitudinal term, µ∥, and of an odd component, µ⊥. The ratio D∥

Tµ∥
= 1 + γ2 βM̂(0)

1+βM̂(0)
is greater than one, which hints at a more efficient exploration of configurations than
in equilibrium, but this effective temperature [69] is not the one that drives dynamical
arrest.

A plot of longitudinal and transverse mobilities as a function of the inverse temper-
ature is shown in Fig. 5.2, where the low density approximation of the memory kernel
M̂(0) ≈ M̂ (1) [see Eq. (5.36)] was used. The longitudinal mobility decreases with tem-
perature from its free particle high-T value, while the modulus of the odd mobility has
a non-monotonic behavior, with a maximum located in the same region where the odd
diffusion steeply rises, and where the efficiency of transverse forces starts decreasing,
which was depicted in Fig. 5.1. This simultaneous occurrence of a similar behavior in
all these quantities supports the physical picture of transverse forces operating at their
best in the mildly interacting regime.

We also see from Eq. (5.79) that both the longitudinal and transverse mobilities
vanish at the glass transition Td. Physically, the above result implies the absence of a
long-time systematic displacement in the non-ergodic phase both along the direction
of the external force and in the direction transverse to it.

5.8.3 Odd viscosity

This subsection is devoted to the computation of the odd viscosity. Odd viscosity
appears as an anti-symmetric component of the viscous tensor. Upon application
of an external shear stress, a system with odd viscosity develops a flow in the plane
orthogonal to the one along which the shear stress is applied. A Green-Kubo approach,
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developed in Ref. [85], relates the odd viscosity of a nonequilibrium system to the
time integral of stress-stress correlation functions. Within this framework, using linear
response theory, the viscous tensor in the hydrodynamic limit reads

ηabcd = β

V

∫ +∞

0
dt
〈
σab(t)σIK

cd (0)
〉
. (5.80)

The average of the integrand is meant both with respect to the initial condition and
with respect to the realizations of the noise. The notation σIK

ab refers to the Irving-
Kirkwood stress tensor for overdamped dynamics:

σIK
ab = −1

2
∑
i ̸=j

rij,a(t)rij,b(t)
rij(t)

v′(rij(t)), (5.81)

and σab is the stress tensor in the presence of transverse forces

σab = (1d + γA)bcσIK
ac . (5.82)

The odd viscosity is finally defined as

η⊥ ≡
1
2 (ηxyxx − ηxxxy) , (5.83)

where x = 2a − 1 and y = 2a with a = 1, . . . , d/2. To be explicit, we focus on the
x = 0, y = 1 case. The odd viscosity then becomes

η⊥ = β

2V

∫ +∞

0
dt
〈
σIK
xy (t)σIK

xx(0)
〉
−
〈
σIK
xx(t)σIK

xy (0)
〉

+ γ
〈
σIK
xx(t)σIK

xx(0)
〉

+ γ
〈
σIK
xy (t)σIK

xy (0)
〉
.

(5.84)

The first two terms inside the integrand vanish because they are odd upon rotation in
the xy plane. The latter terms are〈
σIK
xx(t)σIK

xx(0)
〉

+
〈
σIK
xy (t)σIK

xy (0)
〉

= 1
4

〈 ∑
i ̸=j,k ̸=l

rij,x(t)rij,x(t)rkl,x(0)rkl,x(0) + rij,x(t)rij,y(t)rkl,x(0)rkl,y(0)
rij,x(t)rkl,x(0) v′(rij(t))v′(rkl(0))

〉

= 1
4

〈∑
i ̸=j

rij,x(t)rij,x(t)rij,x(0)rij,x(0) + rij,x(t)rij,y(t)rij,x(0)rij,y(0)
rij,x(t)rij,x(0) v′(rij(t))v′(rij(0))

〉

∼ 1
2d2

〈∑
i] ̸=j

|rij · r0|2

rij(t)rij(0)v
′(r(t))v′(rij(0))

〉

= ρ2V

2d2

∫
dr0g(r0)

〈
|r(t) · r0|2

rij(t)rij(0)v
′(r(t))v′(rij(0))

〉
dyn

= ρV l2

2d M(t),
(5.85)

where ⟨. . .⟩dyn is an average over the realization of the noise in the two-body dynam-
ics. In the last passage we have used the fact that the direction of the interparticle
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separation is constant throughout the dynamics and that to leading order in d we have
r(t) ∼ ℓ, with ℓ the characteristic interaction length of the potential. The odd viscosity
is therefore

η⊥ = γβρ0ℓ
2

4d M̂(0). (5.86)

As the glass transition is approached, the odd viscosity diverges. The physical inter-
pretation of this phenomenon is that infinitely long-lived memory develops also at the
level of stress fluctuations with respect to transverse perturbations, a consequence of
the chiral interaction produced by the nonequilibrium drive. Below Td, small external
shear stresses applied to the system generate neither longitudinal nor transverse flows,
consistently with the picture of a dynamically arrested glass, and both viscosities are
formally infinite.

5.9 Outlook

In this chapter, we have studied how transverse forces speedup the dynamics in a
mean field liquid. Consistently with what we found for the p-spin, the dynamical
ergodicity breaking temperature is not changed by transverse forces. As the transition
is approached, the efficiency of transverse forces decreases while, quite surprisingly, at
higher temperatures the behavior of the speedup is nonmonotonous. Close to the glass
transition, the study of odd transport coefficients corroborates the picture, which was
already emerging from the numerical analysis of Chapter 4, of an arrested liquid where
the particles swirl within the cages induced by the interaction with their neighbors.
Can we provide an analogous analytical characterization in finite dimensional settings?
We address this question in the next chapter, where two finite dimensional theories for
liquid with transverse forces are developed, the weak-coupling and the mode-coupling
theory.
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Contributions from Chapter 4

• We adapt the dynamical mean field theory to dense liquids with transverse
forces in the large dimensional limit.

• Our approach allows to obtain equation of motion for a tagged particle
in the fluid, and for the collision process between two particles. Both
the dynamical process involve the force-force autocorrelation function be-
tween a pair of interacting particles. This autocorrelation function is self-
consistently, implicitly determined through the two-body process.

• The central result of our approach is an expression for the longitudinal dif-
fusion constant D∥(γ, T ) of the system, as a function of the zero-frequency
mode of the force-force autocorrelation function.

• We find that there exists a dynamical temperature Td(γ), such that
D(γ, T < Td(γ)) = 0. In this region, ergodicity is broken. The dynamical
temperature is independent from the strength of transverse forces, and it
is the same as in equilibrium, Td(γ) = Td(0).

• The efficiency of transverse forces is given by the ratio D∥(γ, T )/D∥(0, T ).
We study its behavior as a function of the temperature. For T →∞, this
ratio tends to 1. For T → Td, the ratio tends to a constant that depends
on γ.

• Through a low density treatment of the memory kernel for a linear poten-
tial we discover that the has a nonmonotonous behavior as a function of
the temperature, reaching a maximum before going to regions of higher
densities.

• We find that in the asymptotic limit of large transverse forces, γ → ∞ at
fixed T , the efficiency grows linearly in γ.

• We determine, in the ergodic region and close to dynamical arrest, odd
transport coefficient unlocked by transverse forces: the odd diffusivity D⊥,
the odd mobility µ⊥, and the odd viscosity η⊥

• We characterize the behavior of the odd transport coefficient as the glass
transition is approached. As T → Td, D⊥ → −γTd, µ⊥ → 0, η⊥ → +∞.

• Our study of the transport coefficients suggest that, as the glass transition
is approached, particles in the fluid get progressively slowed down by the
cage formed by their neighbors. At the glass transition, an arrested liquid
is formed, with particles swirling inside local cages.
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In this Chapter we bring the endeavour of understanding analytically how trans-
verse forces operate to the finite dimensional realm. We extend two approximations
schemes, the weak-coupling theory and the mode-coupling theory, to the dynamics
of liquids with transverse forces. The former approximation scheme is valid for case
where the interactions are weak compared to thermal fluctuations, and predicts that
the efficiency of transverse forces increases as the the temperature decreases. The sec-
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ond approximation schemes predicts a dynamical arrest below a dynamical transition
temperature TMCT. As for the mean field scenario, we find that TMCT is the same as for
equilibrium dynamics. In the ergodic phase, and approaching the transition, we find
that the gain provided by transverse forces is a monotonously decreasing function of
the temperature. Our analysis allows us also to compute many other transport coeffi-
cients, with a particular emphasis on odd diffusivity, odd mobility and odd viscosity.
These findings corroborate and rationalize the behavior of dense liquids with transverse
forces observed numerically in Chapter 4. We conclude by analyzing the mode-coupling
theory for a model of lifted active Brownian particles, introduced in Chapter 1. We
find results similar to the ones obtained for transverse forces, suggesting that the trend
of the efficiency witnessed for this minimal model might hold also for other irreversible
samplers.
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When interested in the dynamics of dense liquids [26], the mode-coupling approx-
imation [116, 115] is a method of choice. It is a versatile tool designed to analyze
the dynamics of simple liquids and of other soft-matter systems in realistic space di-
mensions (d = 2 or 3). It has famously been applied to critical dynamics [153], to
glass-formers [115], to polymers [236] and colloidal assemblies [158, 220] up to hard-
condensed matter systems [238]. These systems share the common trait that they are
in thermal equilibrium. In recent years, the mode-coupling approximation has been
extended to some nonequilibrium settings, such as sheared liquids [100], granular flu-
ids [128, 165], or, even more recently, to systems of self-propelled particles [244, 176,
243, 76]. Here, our goal is to use these works as an inspiration to develop a mode-
coupling approximation for transverse forces.

Before dwelling into mode-coupling theory, however, we first explore the dynamics
of a tracer in a weak fluctuation regime. This approximation scheme, known as the
weak-coupling approximation [79, 78], is a way to implement dynamically the random-
phase approximation [124], used to describe correlation functions in dense liquids. It
has been applied to the diffusion of tracer particle in the passive, active [79] and
driven [78] case, and also in the presence of non-reciprocal interactions [20]. Here, it is
instrumental in providing a first, insightful picture of how transverse forces influence
the dynamics in the high temperature regime.

6.1 Dynamics with transverse forces

Our starting point is the following dynamics for a fluid of interacting particles with
positions ri in three dimensions

ṙi = µ0 (1 + γA) Fi +
√

2µ0Tξi, (6.1)

with Fi ≡ −
∑
i∇iV (|ri − rj|) a conservative force arising from a pairwise, isotropic

interaction potential, and the ξi’s are independent Gaussian white noises with inde-
pendent components. The bare mobility µ0 and the temperature T are related to the
diffusion constant of a free particleD0 through Einstein’s relationD0 = µ0T , setting the
Boltzmann constant to unity. This dynamics differs from its overdamped equilibrium
counterpart due to the presence of an antisymmetric matrix A = −AT . The resulting
additional transverse force AFi = AαβFi,β injects into the system a nonequilibrium
current that nevertheless preserves the Boltzmann distribution in the nonequilibrium
steady-state. Following the discussion of Sec. 4.1, we choose for A the form

A ≡

0 −1 0
1 0 0
0 0 0

 . (6.2)

We proceed by studying Eq. (6.1) using the weak-coupling approximation.

86



Mode-coupling and weak-coupling theory for transverse forces

6.2 Weak coupling approximation

We consider the problem of a tracer diffusing in a system interacting with transverse
forces in the special case in which fluctuations in the surrounding fluid can be consid-
ered as weak. Following [78], we assume that the tracer produces a small perturbation
in the density field of its environment, a procedure known as the random phase approxi-
mation, and derive an expression for the transport coefficients of the tracer, namely the
longitudinal and the odd diffusion constants. This gives a first grasp on the speedup
generated by transverse forces. In spite of throwing an interesting physical light, this
approach does not easily extend to low temperatures where the weak coupling hypoth-
esis is not fulfilled.

6.2.1 Equation of motion for a tracer

We consider a tagged particle with position r0 diffusing in a fluid under the action of
transverse forces. We include the possibility for the tagged particle to be subjected to
a constant external force Fext, which will be used to probe the mobility of the tagged
particle. The equation of motion for the tracer is

ṙ0 = µ0Fext − µ0(1 + γA)
∑
i>0

∇0V (r0(t)− ri(t)) +
√

2µ0Tξ0. (6.3)

This is Eq. (6.1), with the role of particle 0 being singled out. All other particles in the
fluid also interact according to Eq. (6.1). We introduce the density field of the fluid
without the tracer, n(r, t) ≡ ∑i>0 δ(r− ri(t)) and we can then rewrite Eq. (6.3) as

ṙ0 = µ0Fext − (1 + γA)(∇V ∗ n)(r0(t), t) +
√

2µ0Tξ0(t). (6.4)

with the convolution between two functions denoted by ∗: (f ∗g)(r) ≡
∫
drf(r−r′)g(r′).

Equation (6.4) needs to be complemented with the Dean-Kawasaki [74] equation for
n(r, t):

∂tn(r, t) = µ0T∇2n(r, t) + µ0∇ · [(1 + γA)n(r, t)(∇V ∗ n)(r, t)]

+ µ0∇ · [(1 + γA) · n(r, t)∇V (r− r0(t))] + ∇ ·
√

2Tµ0n(r, t)χ(r, t),
(6.5)

where the Gaussian noise χ(r, t) has correlations ⟨χ(r, t)⊗ χ(r′, t′)⟩ = 1δ(r−r′)δ(t−t′).
In order to solve Eqs. (6.4, 6.5) we resort to the random phase approximation.

6.2.2 Random phase approximation

In the language of the collective coordinate n, the random phase approximation is a
simple linearization of the Dean-Kawasaki equation (6.5) for the local and fluctuating
density field n(r, t) = ∑

i δ(r− ri(t)) [78, 79, 143, 20]. Assuming that the homogeneous
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density of the system ρ0 ≡ N
V

is large enough so that density fluctuations remain small,
we split n(r, t) into

n(r, t) = ρ0

(
1 + 1
√
ρ0
ϕ(r, t)

)
(6.6)

with ϕ(r, t) a fluctuating field. To linear order in ϕ/√ρ0, which we assume to be small,
Eq. (6.5) becomes

∂tϕ = µ0T∇2ϕ+ µ0∇ · (∇ρ0V ∗ ϕ) (r, t) + µ0∇2√ρ0V (r− r0(t)) + ∇ ·
√

2Tµ0χ(r, t).
(6.7)

In deriving Eq. (6.7) from Eq. (6.5) we used the fact that, to linear order in ϕ/√ρ0, ∇ ·
γAn(r, t)(∇V ∗n)(r, t) = 0 because A is anti-symmetric, while the nonzero contribution
from ∇·γA·n(r, t)∇V (r−r0(t)) is of order ρ−1

0 . The linearized equation for the density
field is therefore not directly influenced by the presence of the transverse forces. Instead
the latter manifestly appear in the equation of motion of the tracer. To proceed toward
the weak coupling approximation, we consider the case where the interaction potential
between the particle is soft, with V (r) finite as r → 0. Upon introducing the Fourier
transform of a function f by the convention f(k) ≡

∫
dr e −ik·rf(r), we obtain from

Eq. (6.4):

ṙ0(t) = µ0Fext − iµ0(1 + γA)
∫ dk

(2π)d e ik·r0(t)k√ρ0V (k)ϕ(k, t) +
√

2Tµ0ξ0(t), (6.8)

where γ appears explicitly in the right-hand side. It is formally possible to express
ϕ(k, t) as a functional of the tracer position r0 upon integrating Eq. (6.7), and then
Eq. (6.8) becomes a self-contained equation for r0. We assume that the bath and the
tracer have evolved for very long times before we start observing them so that the
initial condition for the density fluctuation ϕ(k, t) can be overlooked, namely

ϕ(k, t) =
∫ t

−∞
ds
−µ0k

2√ρ0V (k)e−ik·r0(s) + i
√

2µ0Tk · χ(k, s)
e−µ0Tk2[1+βρ0V (k)](t−s),

(6.9)

the correlations of the noise in Fourier space being ⟨χ(k, t) ⊗ χ(k′, t′)⟩ = 1(2π)dδ(t −
t′)δ(k + k′). Substitution of Eq. (6.9) into Eq. (6.8) leads to

ṙ0(t) = µ0Fext + µ0

∫ t

−∞
dsF(r0(t)− r0(s), t− s) + Ξ(r(t), t) +

√
2µ0Tξ0(t). (6.10)

The interaction between the tracer and the bath splits into a deterministic force

F(r0(t), t) ≡ iµ0

∫ dk
(2π)3 (1 + γA) · kk2ρ0V

2(k) e ik·r0(t)−µ0Tk2[1+βρ0V (k)]t, (6.11)

and a Gaussian colored noise Ξ, independent of ξ0. The memory kernel ⟨Ξ(r(t), t) ⊗
Ξ(r0(t′), t′)⟩ = G(r0(t)− r0(t′), t− t′) has the following expression:

G(r0(t), t) ≡
(Tµ0)2

ρ0

∫
k
(1 + γA)k̂⊗ k̂(1− γA) [βρ0V (k)]2

1 + βρ0V (k) e ik·r0(t)−µ0Tk2[1+βρ0V (k)]t.

(6.12)
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Mode-coupling and weak-coupling theory for transverse forces

We are now in a position to define, and then to determine, the various transport
coefficients quantifying the dynamics of the tracer. Our computation rests on a path-
integral formalism, which we briefly outline in the next subsection.

6.2.3 Averaging over the tracer’s trajectories

We are interested in the computation of the diffusivity tensor, obtained from the
velocity-velocity autocorrelation function [125]

D ≡
∫ +∞

0
dt⟨ṙ0(t)⊗ ṙ0(0)⟩ = lim

tf →∞
⟨[r0(tf )− r0(0)]⊗ ṙ0(0)⟩, (6.13)

with Fext = 0, along with that of the mobility tensor µ, defined by the response to an
external force as

⟨r0(tf )− r0(0)⟩ ≡ µFexttf (6.14)

as tf → ∞ and Fext → 0. The angular brackets denote averages over the realization
of the noise. Using a path-integral formalism, these averages over the noise realization
can be rewritten as weighted averages over the tracer’s trajectories. If f(r0(tf )) is a
generic function of the tracer position at the final time tf then within the path-integral
formalism we have

⟨f(r0(tf ))⟩ =
∫
Dp0(t)Dr0(t)f(r0(tf )) e −S[r0(t),p0(t)], (6.15)

where the Janssen-De Dominicis functional integral
∫
Dp0(t)Dr0(t) is over all the tra-

jectories r0(t),p0(t). The response field p0(t) is an auxiliary field encoding stochastic
fluctuations. The trajectories are weighted by a trajectory-dependent exponential fac-
tor e −S[r0(t),p0(t)]. The corresponding action features two contributions, expressing
respectively the motion of a free tracer and its interactions with the bath:

S[r0(t),p0(t)] = Sfree[r0(t), p0(t)] + Sint[r0(t),p0(t)], (6.16)

with

Sfree[r0(t), p0(t)] ≡ −i
∫

dtp0(t) ·
[
ṙ0(t)− µ0Fext

]
+ µ0T

∫
dtp0(t)2, (6.17)

and

Sint[r0(t),p0(t)] ≡ i
∫

dt
∫ t

−∞
dsp0(t) · F(r0(t)− r0(s), t− s)

+
∫

dt
∫ t

−∞
dsp0(t) ·G(r0(t)− r0(s), t− s) · p0(s).

(6.18)

To evaluate the dynamical averages in Eqs. (6.13, 6.14), we resort to a small coupling
approximation between the bath and the tracer and expand in powers of the small
coupling parameter. This is carried out explicitly in the next subsection.
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6.2.4 Weak-coupling approximation

We now assume that the coupling between the bath and the tracer is weak with respect
to the thermal forces. This is expressed by requiring that

h ≡
√
ρ0V

T
≪ 1. (6.19)

From Eqs. (6.11, 6.12) we see that both F and G are of order h2. From Eq. (6.18), this
implies that Sint is of order h2 as well. To second-order in h, dynamical averages can
thus be computed by expanding the exponential e −S:

⟨f(r0(tf ))⟩ = ⟨f(r0(tf ))⟩free − ⟨f(r0(tf ))Sint⟩free

1− ⟨Sint⟩free
+O(h4), (6.20)

where ⟨. . .⟩free ≡
∫
Dr0(t)Dp0(t) . . . e −Sfree refers to an average over the dynamics of

a free tracer. The action Sfree is quadratic, which ensures that linear and quadratic
functionals of the trajectories r0(t), p0(t) can be computed exactly. Since we are
interested in the tracer’s displacement, we define the one-point quantity ∆r0(t, s) ≡
r0(t)− r0(s) with t ≥ s. We then have

⟨∆r0(t, s)⟩free = µ0Fext(t− s),
⟨p0(t)⟩free = 0,

(6.21)

from which we recover the result that the mobility tensor for the free tracer is µfree =
µ01. The two-point averages read

⟨p0(t)⊗ p0(s)⟩free = 0
⟨∆r0(t, s)⊗ p0(s′)⟩free = −i1χ[s,t)(s′)

⟨
[
∆r0(t, 0)− µ0Fextt

]
⊗
[
∆r0(t′, s′)− µ0Fext(t′ − s′)

]
⟩free = 21µ0TL([s, t] ∩ [s′, t′]),

(6.22)

where χ[s,t)(s′) is the characteristic function of the interval [s, t) (it is 1 if s′ ∈ [s, t) and
0 otherwise). The quantity L[a, b] returns the length of the interval [a, b]. Note that
for Fext = 0 the last equality in Eq. (6.22) yields the mean-squared displacement of a
free particle, ⟨∆r0(tf , 0)2⟩free = 2dµ0Ttf .

We now evaluate ⟨Sint⟩free. This average requires the evaluation over the dynamical
action for a free particle of two contributions. The first one is

⟨p0(t) e ik·∆r0(t,s)⟩free = i e −µ0Tk2(t−s)+ik·Fext(t−s)⟨p0(t)∆r0(t, s)⟩free · k = 0, (6.23)

where we made use of Wick’s theorem and of the second equality of Eq. (6.22). Similarly
one can show that the other term vanishes, namely ⟨p0(t)⊗ p0(s) e ik·∆r0(t,s)⟩ = 0. We
thus conclude that

⟨Sint⟩free = 0. (6.24)
In the next two subsections we will compute the diffusion and the mobility tensors to
leading order in h.
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Mode-coupling and weak-coupling theory for transverse forces

6.2.5 Diffusion tensor

We specialize the calculation to the case where no external force is applied to the
tracer particle, Fext = 0. The calculation of the diffusion tensor to second order in the
weak coupling h requires computing two free-particle dynamical averages, stemming
respectively from the drift term F of Eq. (6.11) and from the memory term G of
Eq. (6.12). They are given by (with s ≤ t):

⟨∆r0,a(tf , 0)ṙ0,b(0)p0,c(t) e ik·∆r(t,s)⟩free = −2iδacµ0Te
−µ0Tk2[1+βρ0V (k)](t−s)

× kbχ[s,t)](0)χ[0,tf )(t)〈
∆r0,a(tf , 0)ṙ0,b(0)p0,c(t)p0,d(s) e ik·∆r0(t,s)

〉
free

=
[
δbdδacδ(s− 0)− 2µ0Tδackdkbχ[s,t)(0)

]
× χ[0,tf ](t) e −µ0Tk2(t−s).

(6.25)

Using these results, one can directly compute the diffusivity matrix

D(γ, T ) ≈ µ0T1− lim
tf →∞

⟨∆r0(tf , 0)⊗ r0(0)Sint⟩free

= µ0T1− lim
tf →+∞

i
∫

dt
∫ t

−∞
ds⟨∆r0(tf , 0)⊗ r0(0) [p0(t) · F(∆r0(t, s), t− s))]⟩free

− lim
tf →+∞

∫
dt
∫ t

−∞
ds⟨∆r0(tf , 0)⊗ r0(0) [p0(t) ·G(∆r0(t, s), t− s)) · p0(s)]⟩free

= µ0T

1− 1
2ρ0

∫
k
(1 + γA)k̂⊗ k̂ [βρ0V (k)]2[

1 + 1
2βρ0V (k)

]2
+ 1

4ρ0

∫
k
(1 + γA)k̂⊗ k̂T (1− γA) [βρ0V (k)]3[

1 + 1
2βρ0V (k)

]2
[1 + βρ0V (k)]

.
(6.26)

For γ = 0, we obtain

D(0, T ) = µ0T

1− 1
2ρ0

∫
k

k̂⊗ k̂ [βρ0V (k)]2[
1 + 1

2βρ0V (k)
]

[1 + βρ0V (k)]


= µ0T1

1− 1
2dρ0

∫
k

[βρ0V (k)]2[
1 + 1

2βρ0V (k)
]

[1 + βρ0V (k)]

 ,
(6.27)

where we used, in the second line, the fact that upon integration over all the wavevectors
k̂⊗k̂ can be replaced, using the isotropy of the integrand in Eq. (6.27), by d−11. We thus
recover the equilibrium result for the longitudinal diffusion constant obtained in [79,
78]. The equilibrium diffusion tensor of Eq. (6.27) is diagonal, and the interaction
of the tracer with the bath reduces its ability to diffuse. When γ ̸= 0, the diffusion
tensor acquires an antisymmetric contribution proportional to γ, and the diagonal part
picks up a contribution proportional to γ2. These additional terms lead respectively
to odd diffusivity and enhanced diffusion. To see this explicitly, we can write the
tensor products of Eq. (6.26) in the (xyz) basis. In this basis, the matrix A displayed

91



Chapter 6

in Eq. (6.2) reads A = ey ⊗ ex − ex ⊗ ey. The second tensor product inside the
brackets of Eq. (6.26) is, neglecting the term that vanishes upon integration over all
the wavevectors,

(1 + γA)k̂⊗ k̂ =
∑

i=x,y,z
k̂2
i ei ⊗ ei + γ

[
ey ⊗ exk̂2

x − ex ⊗ eyk̂2
y

]
. (6.28)

The term proportional to γ is antisymmetric upon integration over the wavevector k,
and it contributes to the odd diffusivity.

The third tensor in Eq. (6.26) is

(1 + γA)k̂⊗ k̂(1− γA) =
∑

i=x,y,z
k̂2
i ei ⊗ ei + γ

[
ex ⊗ eyk̂2

x − ey ⊗ exk̂2
y

]
+ γ

[
ey ⊗ exk̂2

x − ex ⊗ eyk̂2
y

]
+ γ2

[
ex ⊗ exk̂2

x + ey ⊗ eyk̂2
y

]
.

(6.29)

Upon integration over k the terms proportional to γ cancel out, leaving only a contri-
bution proportional to γ2 to the longitudinal diffusion.

The diffusion tensor in the (xyz) basis is therefore given by

D = Dxx(γ) [ex ⊗ ex + ey ⊗ ey] +Dzzez ⊗ ez +D⊥ (ey ⊗ ex − ex ⊗ ey) , (6.30)

with D∥(γ) given by

D∥(γ) = µ0T

1− 1
2dρ0

∫
k

[βρ0V (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
]

+ γ2

4dρ0

∫
k

[βρ0V (k)]3

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
]2
.

(6.31)

The odd diffusion constant reads

D⊥(γ) = −γ µ0T

2dρ0

∫
k

[βρ0V (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
] . (6.32)

For systems with equilibrium dynamics (that is, when γ = 0), Onsager reciprocity
relations impose this quantity to vanish. However, when departing from equilibrium,
as is the case in the presence of transverse forces, odd transport coefficients need not
vanish as they are a priori not prohibited by time-reversal invariance. In our case, a
nonzero odd diffusivity reveals the presence of a directed swirling motion for the tagged
particle. Of course, for γ = 0, the odd diffusivity vanishes, as expected in equilibrium.

We see from Eq. (6.31) that the diffusivity of the tracer is enhanced by transverse
forces, as the contribution proportional to γ2 is positive. It is remarkable that this dif-
fusion enhancement is captured even for a system where the linearized bath relaxation
is not affected by the transverse forces. An enhancement of diffusion in odd system
was also found in the case where the oddity is induced by external magnetic fields [145,
146], and is not, as in our case, a consequence of the nonequilibrium dynamics of the
system.
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We now take advantage of these explicit expressions to discuss the temperature
dependence of the speedup. First, we observe that both terms in the integrals of
Eq. (6.31) are decreasing functions of the temperature. This implies that the quantity
D∥(0)/µ0T is an increasing function of the temperature. Thus the efficiency of the
transverse forces, defined as the ratio of the diffusion coefficient with and without
transverse forces, is

D∥(γ)
D∥(0) = 1 + γ2 I

D∥(0)/µ0T
, (6.33)

with I ≡ 1
2dρ0

∫
k

[βρ0V (k)]3

[1+βρ0V (k)][1+ 1
2βρ0V (k)]2 . We conclude that the efficiency of transverse

forces increases upon cooling down the system. This is consistent with the increase
of the odd diffusivity of the tracer. An analogous trend was recently found for binary
mixture with nonreciprocal interactions between particles of different species [20].

It would be remarkable that the monotonous trend of the efficiency extends to low
temperatures or high densities. In the following sections, using the mode coupling
theory, we will show that this trend does not hold for very cool or very dense systems,
where the small coupling approximation in Eq. (6.19) breaks down. Before moving
to the mode-coupling formalism, we briefly examine the mobility of the tracer which
contains additional information, since the Einstein relation between the diffusivity and
mobility tensors does not necessarily hold.

6.2.6 Mobility tensor

The mobility tensor of the tracer can be obtained from the weak coupling expansion
of Eq. (6.14):

⟨∆r0(tf , 0)⟩ = µ0TFexttf − ⟨∆r0(tf , 0)Sint⟩free + o(tf ). (6.34)

The second term involves the following averages, which can be obtained using Wick’s
theorem and the dynamical averages of a free tracer displayed in Eq. (6.22):

⟨ ∆r0,a(tf , 0)p0,b(t) e ik·∆r0(t,s)⟩free = iδabχ[0,tf ) e −µ0Tk2(t−s)+iµ0k·Fext

⟨∆r0,a(tf , 0)p0,b(t)p0,c(s) e ik·∆r0(t,s)⟩free = −iδabkcχ[0,tf ) e −µ0Tk2(t−s)+iµ0k·Fext
.

(6.35)

Plugging these results into Eq. (6.34) we obtain

⟨∆r(tf , 0)⟩ ≈ µ0Fexttf − (1 + γA)Fext µ0

2dρ0

∫
k

[ρ0βV (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
]tf

≡
(
1µ∥ + Aµ⊥

)
Fexttf .

(6.36)

When γ = 0, the Einstein relation D∥(0, T ) = Tµ∥(0, T ) is recovered. When γ ̸= 0,
the presence of a transverse component to the force on the tracer does not affect the
longitudinal mobility of the tracer, and its expression is the same as in equilibrium [78].
However, an odd mobility coefficient [224] proportional to γ appears. If the tracer is
pulled by a force Fext along a given direction in the (xy) plane, it will also move along
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the transverse direction parallel to AFext: this is the physical meaning of the emergent
odd mobility. As the temperature is lowered, the longitudinal mobility decreases while
the odd mobility increases.

The main take-home message of this section is the increase of the sampling efficiency
upon decreasing the temperature. In what follows we analyse what happens when the
small coupling approximation breaks down. When the strength of transverse forces
increases, we ask about the asymptotic behavior of the efficiency.

6.3 Mode-coupling theory in the presence of transverse
forces

The dynamical evolution of the system of N particles with positions ri is governed by
the operator Ωγ

Ωγ ≡ D0
∑
i

∇i · [∇i − (1 + γA) βFi] . (6.37)

When γ = 0, Ωγ is the usual Smoluchowski evolution operator of the equilibrium
dynamics. The evolution of the probability distribution ρ(rN , t) of the system reads

∂tρ(rN , t) = Ωγρ(rN , t). (6.38)

We can thus write the formal expression for ρ(rN , t) given its initial condition ρ(rN):

ρ(rN , t) = e Ωγtρ(rN , 0). (6.39)

We denote the average value of any function f(rN , t) by ⟨f(rN , t)⟩, and it is fully
determined by the knowledge of ρ(rN , t):

〈
f(rN , t)

〉
≡
∫
drNf(rN) e Ωγtρ(rN) =

∫
drN

[
e Ω†

γtf(rN)
]
ρ(rN)

=
∫
drN e Ω−γtf(rN)ρ(rN) =

〈
e Ω−γtf(rN)

〉
,

(6.40)

where we have used the adjoint operator Ω†
γ, defined as

Ω†
γ ≡ D0

∑
i

[∇i + (1 + γA) βFi] ·∇i, (6.41)

and the following identity, which is a consequence of the breaking of detailed balance:

· · ·Ωγf(rN)
〉

= · · ·
(
Ω†

−γf(rN)
)〉
. (6.42)

The steady state solution of Eq. (6.39) is the Boltzmann distribution ρB(rN) = e −βH(rN )∫
drN e −βH(rN )

with H(rN) ≡ 1
2
∑
i ̸=j V (|ri− rj|). Since we are interested in the steady state dynamics

of the system, we assume that the initial condition is also sampled from the Boltzmann
distribution, i.e. ρ(rN) = ρB(rN).
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We are interested in the fluctuating density mode n(q, t), defined as the Fourier
transform of the fluctuating density field n(r, t) = ∑

i δ(r− ri(t))− ρ0:

n(q, t) ≡
∑
i

e −iq·ri(t), (6.43)

evaluated at the wavevector q, and the dynamical structure factor S(q, t):

S(q, t) ≡ 1
N

〈
n∗(q)

(
e Ω†

γtn(q)
)〉

= 1
N

〈
n∗(q) e Ω−γtn(q)

〉
. (6.44)

The initial condition S(q) is the equilibrium structure factor of the system. Another
quantity of interest is the self-part of the intermediate scattering function, Fs(q, t):

Fs(q, t) ≡
1
N

∑
i

〈
n∗
i (q) e Ω−γtni(q)

〉
, (6.45)

with ni(q) ≡ e −iq·ri .

In the next section, we implement the Mori-Zwanzig projection operator formalism,
described in its generalities in Section 5.1 to obtain an equation of motion for the
dynamical density correlations.

6.3.1 Projection operator formalism

We start our calculation by introducing the Laplace transform

S(q, z) ≡
∫ +∞

0
S(q, t) e −zt, (6.46)

which, once applied to the time derivative of Eq. (6.44) yields

zS(q, z)− S(q) = 1
N

〈
n∗(q)Ω−γ

1
z − Ω−γ

n(q)
〉
. (6.47)

We introduce an operator that projects along the density mode n(q):

P ≡ 1
NS(q)n(q)

〉〈
n∗(q), (6.48)

and its orthogonal counterpart Q ≡ I − P . Using the resolvent identity [115]

Q 1
z − Ω−γ

= Q 1
z − Ω−γQ

+Q 1
z − Ω−γQ

QΩ−γP
1

z − Ω−γ
, (6.49)

we obtain

zS(q, z)− S(q) = 1
N

〈
n∗(q)Ω−γ

1
z − Ω−γ

(P +Q)n(q)
〉

=
 1
NS(q) ⟨n

∗(q)Ω−γn(q)⟩

+ 1
NS(q)

〈
n∗(q)Ω−γQ

1
z −QΩ−γQ

QΩ−γn(q)
〉S(q, z).

(6.50)
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Using the projection operators, we have separated the contributions to the evolution of
the structure factor into an exponentially decaying part with frequency−N−1 ⟨n∗(q)Ω−γn(q)⟩
and a memory kernel. The frequency term reads

− 1
N
⟨n(q)∗Ω−γn(q)⟩ = i

D0

N
q ·
∑
i

⟨ e iq·ri · [(∇i − γAβFi)n(q)]⟩ = −D0q
2. (6.51)

This term, which encodes the diffusive decay of the structure factor in the absence of
interactions, is left unaffected by the transverse forces.

Using an integration by parts, together with the fact that the Boltzmann distribu-
tion describes the steady state of the system, the memory kernel M̃ can be written
as

q · (D0β)2

V ρ0

〈∑
i

eiq·ri((1− γA)Fi + iTq)Q 1
z −QΩ−γQ

×Q
∑
j

eiq·rj (Fi(1− γA)− iTq)
〉
· q ≡ D0q · M̃(q, z) · q.

(6.52)

Due to the presence of projection operators Q, the formula for M̃ can be simplified,

M̃(q, z) = (D0β)2

V ρ0

〈∑
i

eiq·ri((1− γA)Fi + iTq)Q 1
z −QΩ−γQ

Q
∑
j

eiq·rj (Fi(1− γA)− iTq)
〉

= (D0β)2

V ρ0

〈∑
i

eiq·ri((1− γA)Fi)Q
1

z −QΩ−γQ
Q
∑
j

eiq·rj Fi(1− γA)
〉
.

(6.53)

The memory kernel can be expressed in terms of the correlations between projected
force density Fourier modes,

Qj(q) ≡ Q
∑
i

Fi e −iq·ri . (6.54)

Note that due to the projection operator we have . . .Q∑i Fi e −iq·ri⟩ = . . .QT ∑i∇i e −iq·ri⟩
and it is the latter form that is used in the derivation of the mode-coupling approxi-
mation, Eq. (6.65). The memory kernel M̃ thus reads

M̃(q, z) = (1− γA) K̃(q, z)(1− γA), (6.55)

with
K̃(q, z) ≡ D0β

2

V ρ0

〈
j(q)∗Q 1

z −QΩ−γQ
Qj(q)

〉
. (6.56)

Equation (6.50) becomes

zS(q, z)− S(q) = D0

S(q)q ·
[
−1 + M̃(q, z)

]
· qS(q, z). (6.57)

When γ = 0, the memory kernel M̃ is diagonal, and only the correlations among
longitudinal particle currents contribute. We thus fall back onto the equilibrium case.
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In the presence of transverse forces, correlations arising from transverse currents con-
tribute to the dynamics of the structure factor. Cross-correlations among longitudinal
and transverse currents might as well influence the dynamics. This is the new fea-
ture entering the design of our mode-coupling approximation. In the next section, we
expand on the irreducible representation of the memory kernel.

6.3.2 The irreducible memory kernel

We now introduce the irreducible memory kernel. Following Kawasaki [152] and Vogel
and Fuchs [253] we define an irreducible operator

Ωirr
−γ ≡ D0Q

∑
j

∇jQj · (1− γA) [−βFj + ∇j]Q, (6.58)

with Qj ≡ 1− Pj and Pj ≡ e −iq·rj⟩⟨ e iq·rj a single-particle projection operator. The
definition of the irreducible operator comes from a formal extension of the equilibrium
case. Using the fact that particles are statistically equivalent we obtain QΩ−γQ =
Ωirr

−γ − δΩ−γ, with

δΩ−γ = D0β
2

N
Qj(q)⟩ · (1− γA) ⟨j(q)∗Q. (6.59)

Using Eq. (6.59) and the resolvent identity

1
z −QΩ−γQ

= 1
z − Ωirr

−γ
+ 1
z − Ωirr

−γ
δΩ−γ

1
z −QΩ−γQ

, (6.60)

we can express the reducible memory kernel K̃ in Eq. (6.56) as a function of an
irreducible memory kernel K(q, z), where the evolution of the system is governed by
Ωirr

−γ:

K(q, z) ≡ D0β
2

ρ0V

〈
j(q)∗Q 1

z − Ωirr
−γ
Qj(q)

〉
. (6.61)

The relationship between the reducible and the irreducible memory kernels is

K̃(q, z) = [1 + K(q, z)(1− γA)]−1 K(q, z). (6.62)

The introduction of the irreducible memory kernel is a necessary step in order to
avoid an unphysical negative viscosity in the system, which may appear within an
approximate evaluation of the reducible kernel [64].

Approximations are now needed to compute K(q, z). In the next section we apply
the mode-coupling approximation to the memory kernel.

6.3.3 Mode-coupling expansion of the memory matrix

To perform the mode-coupling expansion, we follow Szamel and Löwen [247]. The basic
idea behind the mode-coupling approximation is to decompose the current field into a
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sum of products of density modes:

Qj(q) ≈ 1
2
∑

k

n(k)n(q− k)
N2S(k)S(q− k) ⟨n

∗(k)n∗(q− k)Qj(q)⟩ , (6.63)

where the factor 1
2 comes from a Gaussian factorization of a static multi-point density

correlator. The central mode-coupling approximation is the factorization of the time-
dependent multi-point density correlator, combined to the approximation Ωirr

−γ ≈ Ω−γ:

〈
n(k′)∗n(q− k′)∗ e Ωirr

−γtn(k)n(q− k)
〉
≈
〈
n∗(k′)eΩ−γtn(k)

〉 〈
n∗(q− k′) e Ω−γtn(q− k)

〉
+
〈
n∗(k′) e Ω−γtn(q− k)

〉 〈
n∗(q− k′) e Ω−γtn(k)

〉
= N2S(k, t)S(q− k, t)

[
δk,k′ + δk′q−k

]
.

(6.64)
We now compute the expectation value in Eq. (6.63) with the aid of a convolution
approximation

⟨n(k)∗n(q− k)∗Qj(q)⟩ = ⟨n(k)∗n(q− k)∗j(q)⟩ − 1
NS(q) ⟨n(k)∗n(q− k)∗n(q)⟩ ⟨n(q)j(q)⟩

≈ T

〈
n(k)∗n(q− k)

∑
i

∇i e −iq·ri

〉

− T

NS(q)NS(k)S(q− k)S(q)
〈
n(q)∗∑

i

∇i e −iq·ri

〉

= −T
〈∑

i

∇i [n(k)∗n(q− k)∗] e −iq·ri

〉

+ T

NS(q)NS(k)S(q− k)S(q)
〈∑

i

∇i [n(q)∗] e −iq·ri

〉
= −iNT [kS(q− k) + (q− k)S(k)− qS(k)S(q− k)]
= iNTρ0S(k)S(q− k) [kc(k) + (q− k) c(q− k)] ,

(6.65)
where in the last step we have introduced the direct correlation function c(k), related
to S(k) via the Ornstein-Zernike relation ρ0c(k) = 1 − 1

S(k) . We can now inject the
expansion (6.63) into the memory kernel K of Eq. (6.61). We then use Eq. (6.64) and
Eq. (6.65). After replacing the sum over the wavevectors with an integral, ∑k → V

∫
k,

we obtain
K(q, t) ≈ D0ρ0

2

∫
k

Vk,q ⊗Vk,qS(k, t)S(q− k, t), (6.66)

where the vertex
Vk,q ≡ kc(k) + (q− k)c(|q− k|) (6.67)

is the mode-coupling vertex of the equilibrium dynamics.

To proceed further, we decompose the kernel K over an orthonormal basis that
depends on the wavevector q and on the matrix A. The axes of this basis are defined
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by

e1 ≡ eq1 ≡
ATAq
|Aq|

e2 ≡ eq2 ≡
Aq
|Aq|

e3 ≡ eq3 ≡
(1−ATA)q
|(1−ATA)q|

.

(6.68)

Looking at the expression for A in Eq. (6.2), we see that e1 is the normalized projection
of q on the (xy) plane, e2 is the normalized vector orthogonal to e1 in the (xy) plane,
as selected by the matrix A, and e3 is the normalized projection of q along the z-
direction. We refer to this basis as the A − q basis. The matrix K(q, t) is diagonal
in the basis defined in Eq. (6.68), within the mode-coupling approximation. To prove
this, we consider the decomposition of K(q, t) in the A− q basis, namely

K(q, t) =
3∑

i,j=1
Kij(q, t)ei ⊗ ej. (6.69)

The matrix element Kij reads

Kij(q, t) = D0ρ0

2

∫
k
[kic(k) + (qi − ki)c(|q− k|)]

[kjc(k) + (qj − kj)c(|q− k|)]S(k, t)S(q− k, t).
(6.70)

We now consider the symmetries of the dynamics with transverse forces. The first
symmetry transformation we exploit is a reflection of direction 3 (the axis z). This
symmetry imposes

K(R3q, t) = K(q, t), (6.71)

with R3q ≡ q−2e3(q ·e3) the operator that reflects a vector with respect to direction 3.
By construction, we have eqi = eR3qi for i = 1, 2, and eq3 = −eR3q3. This implies that
K3i(q, t) = K3i(R3q, t) for i = 1, 2. On the other hand, a change of variable k3 → −k3
in the momentum integration of K3i(R3q, t) shows that

K3i(R3q, t) = −K3i(q, t), (6.72)

where we used the fact that S(R3k, t) = S(k, t) due to the symmetries of the dynamics
with transverse forces. Combining Eqs. (6.71, 6.72) we see that K3i(q, t) = −K3i(q, t)
for i = 1, 2, thus implying that K3i(q, t) = 0 for i = 1, 2.

The second symmetry we exploit is obtained by considering a rotation within the
(xy) plane by an angle π/2. The resulting invariance imposes

K(Rπ
2
q, t) = K(q, t), (6.73)

with Rπ
2
q ≡ Aq + e3q3 the operator that rotates a vector by an angle π/2 in the (xy)

plane. By construction, eq3 = eR π
2

q3, eq1 = −eR π
2

q2 and eq2 = eR π
2

q1. This implies
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K12(q, t) = −K21(Rπ
2
q, t). On the other hand, a change of variable k → Rπ

2
k in the

momentum integral of K21(Rπ
2
q, t) shows that

K21(Rπ
2
q, t) = −K12(q, t), (6.74)

where we used the fact that S(Rπ
2
k, t) = S(k, t) due to the symmetries of the dynamics

with transverse forces. Combining Eqs. (6.73, 6.74) we see that K12(q, t) = −K12(q, t)
for i = 1, 2, thus implying that K12(q, t) = K21(q, t) = 0. This concludes our proof
that the kernel K(q, t) is diagonal in the A− q basis, i.e.

K(q, t) =
3∑
i=1

Kii(q, t)ei ⊗ ei. (6.75)

Using this diagonal approximation, we can give an expression of K̃(q, z). Noting
that the matrix A reads, in the A− q basis,

A = e2 ⊗ e1 − e1 ⊗ e2, (6.76)

we can invert the matrix in Eq. (6.62), substitute the result in Eq. (6.55) and Eq. (6.57)
to finally obtain

zS(q, z)− S(q) = −D0q ·
 1 + (1 + γ2)K22

(1 +K11)(1 +K22) + γ2K11K22
e1 ⊗ e1 + 1

1 +K33
e3 ⊗ e3

+ γ
K11 +K22 + (1 + γ2)K11K22

(1 +K11)(1 +K22) + γ2K11K22
[e1 ⊗ e2 − e2 ⊗ e1]

+ (1 +K11)K22 +K11(K22 − 1)γ2

(1 +K11)(1 +K22) + γ2K11K22
e2 ⊗ e2

 · qS(q, z),

(6.77)

where we have omitted the dependence on (q, z) of the memory kernel Kii, for sim-
plicity. Note that only the first line of the term in the square bracket contributes
to the decay of S(q, z), due to the projection along the mode q. The off-diagonal,
anti-symmetric term on the second line hints at the odd transport properties of the
dynamics, which will be investigated below.

Before turning to the discussion of longitudinal and odd transport, we study the
decay of the dynamical structure factor to a (possibly nonzero) plateau. To do so, we
introduce the normalized dynamical density correlations ϕ(q, t) ≡ S(q,t)

S(q) . Its dynamics
is readily obtained from Eq. (6.77):

zϕ(q, z)−1 = − D0

S(q)q·
 1 + (1 + γ2)K22

(1 +K11)(1 +K22) + γ2K11K22
e1⊗e1+

1
1 +K33

e3⊗e3

·qϕ(q, z).

(6.78)
For γ = 0, we are back to the known equilibrium situation. The isotropy of the
dynamics is restored, K11 = K33 and we consistently find:

zϕ(q, z)− 1 = − D0

S(q)q
2 ϕ(q, z)
1 +K∥(q, z)

(6.79)
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where K∥ is the longitudinal mode-coupling kernel

K∥(q, t) = D0ρ0

2q2

∫
k

[q · kc(k) + q · (q− k)c(|q− k|)]2 S(k, t)S(q− k, t). (6.80)

For the general situation with γ ̸= 0, it is instructive to consider the case where q3 = 0
and rewrite Eq. (6.78) in the time domain:

∂tϕ(q, t) +D0q
2ϕ(q, t)

+D0q
2(1 + γ2)K22 ∗ ϕ(q, t) = −

[
(K11 +K22) + (1 + γ2)K11 ∗K22

]
∗ ∂tϕ(q, t),

(6.81)

where ∗ denotes a convolution in time, f∗g(t) =
∫ t

0 dtf(t−τ)g(τ). With this expression,
it is clear that when γ ̸= 0 the transverse currents affect both the relaxation rate and
the friction kernel of the system.

In order to extract a physical picture from these equations, we inject an approximate
form for the static structure factor in which the structure is sharply localized at a given
wavevector. As a result, the next subsection explores the resulting so-called schematic
approximation.

6.3.4 Schematic mode-coupling theory

The first schematic approximation we consider follows the historical one [19] where
the structure factor is strongly peaked for a wavevector of modulus q0, S(q) ≈ 1 +
S0δ(|q| − q0), which implies in turn that ρ0c(q) = 1 if |q| = q0 and 0 otherwise. Within
this approximation, K22 = 0. In this case, Eq. (6.78) has the following property: if
ϕ(k, t) is rotationally invariant at t = 0, then ϕ(k, t) remains rotationally invariant at
all subsequent times t. The memory kernel thus reads

K11(q0, t) = K33(q0, t)

= D0S
2
0

2ρ0

∫
|k|=|q−k|=q0

dk
(2π)3ϕ(k, t)ϕ(q− k, t)

= λeqϕ
2(q0, t).

(6.82)

where λeq ≡
√

3
16π2

D0S2
0q

3
0

ρ0
ϕ2(q0, t). Upon substitution into Eq. (6.78) we obtain, denoting

by ϕ2(q0, z) the Laplace transform of ϕ2(q0, t),

zϕ(q0, z)− 1 = −D0q
2
0

1
1 + λeqϕ2(q0, z)

ϕ(q0, z). (6.83)

This equation is identical to the one obtained in the equilibrium case for γ = 0.

We briefly review here how an ergodicity breaking scenario is predicted from this
equation [172]. If we denote by f0 the nonergodicity parameter f0 ≡ limt→+∞ ϕ(q0, t),
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we have
lim
z→0

ϕ(q0, z) = f0

z
,

lim
z→0

ϕ2(q0, z) = f 2
0
z
.

(6.84)

Taking the limit z → 0 on both sides of Eq. (6.83) and keeping only the diverging part
yields

f0

1− f0
= λeq

D0q2
0
f 2

0 . (6.85)

Equation (6.85) admits a nonzero solution if and only if λeq
D0q2

0
≥ 4. This is the ergodicity

breaking predicted by the mode-coupling theory of the colloidal glass transition in
equilibrium [247].

We now give an expression for the high-temperature relaxation time in the equi-
librium case. Let us assume that the system is ergodic, λeq < 4D0q

2, and that
ϕ(q0, t) = e

− t
τ0 , from which it follows that ϕ(q0, z = 0) = τ0 and ϕ2(q0, z = 0) = τ0

2 .
Equation (6.83) evaluated at z = 0 gives an expression for the relaxation time τ0

τ0 = 1
q2

0D0 − λeq
2

. (6.86)

This result is physical only for λeq < 2q2
0D0, which corresponds to the ergodic phase.

At higher values of λeq another functional form for the decay of ϕ must be assumed [19,
172].

Implementing the conventional schematic approximation does not allow us to cap-
ture any qualitative change in the evolution equation of the dynamical structure factor.
However, the fact that dynamics is accelerated is a mathematical statement, and so we
should blame the nature of the schematic approximation. There is also the possibility
that the mode-coupling approximation itself does not capture the acceleration provided
by transverse forces, but our analysis, developed in the remainder of the paper, shows
that this is not the case.

The historical schematic approximation spuriously transforms a set of anisotropic
equations for time-correlations into an isotropic one. We thus need to take a step
back and consider an alternative schematic approximation that does not overlook the
anisotropy, which we believe is an essential ingredient. This is what we implement in
the next subsection.

6.3.5 New ansatz for the ergodic phase: relaxation speedup

We now resort to an approximate form of the static structure factor that preserves the
chiral character of the dynamics, and which, as will appear, implies a faster relaxation
in the ergodic phase.

We keep the main ingredient of the schematic approximation, namely the idea
that the structure factor is sharply localized for wavevectors around a given modulus
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q0. Nevertheless, we replace the sharp delta-function with a rounded peak of nonzero
width ϵ, which is assumed to be small with respect to q0, but nonzero. This will be
enough to produce an interesting interplay of modes in various directions. In practice,
we resort to the following approximate forms for S(k) and for the product S(k)S(q−k):

S(k) ≈ 1 + S0
1
ϵd
η

(
k − q0

ϵ

)

S(|k|)S(q − k) ≈ S2
0
ϵd
η

(
k − q0

ϵ

)
η

(
|q− k| − q0

ϵ

) (6.87)

with ϵ−1η(k) a function normalized to unity with an absolute maximum at k = 0. An
example of such η(k) could be a Gaussian function

ϵ−dη(k) ≡ 1√
2πϵ2d

e− k2
2ϵ2 , (6.88)

but the specific shape of η is not relevant. Such a function will serve as an approxima-
tion of the Dirac distribution. Using the Ornstein-Zernike relation, the direct correla-
tion function is given by

ρ0c(k) ≈
S0
ϵd
η
(
k−q0
ϵ

)
1 + S0

ϵd
η
(
k−q0
ϵ

) . (6.89)

When computing K22(q, t), we focus on a wavevector q such that |q| = q0 and expand
around wavevectors k0 such that k0 = q0 and |q− k0| = q0. We then rewrite k as

k = k0 + ϵp (6.90)

in the integrals of Eq. (6.70). Note that ϵ has the dimension of a wavevector, and hence
p is dimensionless. The approximate values of k and |q− k| up to order ϵ2 are then

k = |k0 + ϵp| = q0 + ϵ
p · k0

q0
+ ϵ2

2q0

[
p2 − (p · k0)2

q2
0

]

|q− k| ≈ q0 + ϵ
p · (q− k0)

q0
+ ϵ2

2q0

[
p2 − (p · (q− k0))2

q2
0

]
.

(6.91)

We now expand the direct correlation function in powers of ϵ. We assume the function
η to be even, so that ρ0c

′(q0) = 0. We thus obtain

ρ0c(k) ≈ ρ0c(q0) + ϵ2 (p · k0)2

2q2
0

ρ0c
′′(q0)

= 1 + ϵ2 (p · k0)2

2S0q2
0

η′′
0
η2

0
,

(6.92)

where we used the notation η0 ≡ η(0), η′′
0 ≡ η′′(0). Substituting Eq. (6.92) into the

expression for the memory kernel K22(q, t), given in Eq. (6.70), we find to lowest order
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in ϵ,

K22(q, t) = D0ρ0

2

∫
k

(
Aq · k
|Aq|

)2

[c(k)− c(|q− k|)]2 S(k)S(|q− k|)ϕ(k, t)ϕ(q− k, t)

≈ ϵ4D0(η′′
0)2

8ρ0q4
0η

4
0

∫
p

(
Aq · k0

|Aq|

)2

(p · q)2 [2p · k0 − p · q]2 η
(

p · k0

q0

)
η

(
p · (q− k0)

q0

)
× ϕ(k0, t)ϕ(q− k0, t).

(6.93)
The integrand is nonzero as long as Aq ̸= 0. Allowing for a small momentum shell
of thickness ϵ was enough for anisotropy to play a role, in contrast to the standard
schematic approximation.

The previous result justifies the following approximation for the memory kernel
K(q, z), when |q| = q0 and Aq ̸= 0:

K(q, z) = λϕ2(q0, z)(e1 ⊗ e1 + e3 ⊗ e3) + νϕ2(q0, z)e2 ⊗ e2, (6.94)

with λ and ν two parameters that depend continuously on density and temperature.
Moreover, as a further simplification, we assume that all the modes relax as the ones
in the (xy) plane. We speculate that the anisotropy of the system would simply lead
to a renormalization of γ for our theory, thus weakly affecting the results discussed in
the following.

Within the above approximation, Eq. (6.78) reads

zϕ− 1 = −q2
0D0ϕ

1 + νϕ2(1 + γ2)
1 + ϕ2(λ+ ν) + ϕ2

2λν (1 + γ2) . (6.95)

For γ = 0, this expression must match its equilibrium counterpart. Therefore we
must have λ = λeq. In the next paragraph we investigate the glass transition and the
dynamic acceleration in the ergodic phase.

Ergodicity Breaking

We substitute Eq. (6.84) into Eq. (6.95) and keep only the leading diverging terms of
order 1/z2:

λeqν
(
1 + γ2

)
(1− f0) f0 = q2

0D0ν
(
1 + γ2

)
. (6.96)

This expression simplifies into Eq. (6.85), namely 1
1−f0

= λeq
q2

0D0
f0, which establishes that

dynamic ergodicity breaking occurs at exactly the same location as in equilibrium.

Speedup of the relaxation time

Using ϕ(q0, z = 0) = τ0, ϕ2(q0, 0) = τ0
2 and substituting into Eq. (6.95) with z = 0 we

obtain an equation for τ0:

τ 2
0

[(
1 + γ2

)(λ
4 − q

2
0D0

)
ν

]
+ τ0

[1
2 (λ+ ν)− q2

0D0

]
+ 1 = 0. (6.97)
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The positive solution for any value of γ is

τ−1
0 (γ) = 4

−λ− ν + 2q2
0D0 +

√
λ2 + ν2 + 4νq2

0D0(1 + 2γ2) + 4q2
0D

2
0 − 2λ(ν + 2γ2ν + 2q2

0D0)
.

(6.98)
This describes the relaxation time for exponential relaxation in the ergodic phase. The
relaxation is exponential as long as λeq < 2q2

0D0, as in equilibrium. As a consistency
check, τ0(0) matches the equilibrium solution, while τ0(γ) < τ0(0) for all values of γ.
This proves that transverse forces accelerate the relaxation of the system.

In the limit γ →∞, the relaxation time reads:

τ0(γ) = 1
γν

√√√√ 2(
q2

0D0 − λ
2

) . (6.99)

In this limit, the relaxation time goes to 0 linearly in 1/γ. If correct, this implies a
relaxation time that goes to zero for a large amplitude of the transverse forces. However,
in numerical applications this method would be hindered by errors in the discretized
equation of motion as increasing γ would in practice demand smaller and smaller
timesteps. Note also that the γ1-dependence of the acceleration at large γ differs from
the naive γ2 acceleration one might anticipate based on a simpler dimensional analysis
as argued in [108]. This modified scaling results from a many-body correlation effect.

We now move to lower temperatures close to the dynamical glass transition, where
the exponential form for the relaxation is no longer valid.

Early and late β-relaxations close to the transition

We now study the time-dependence of ϕ near its intermediate-time plateau within the
ergodic phase, but very close to the mode-coupling critical temperature. We study
whether the known power-law regimes in this region, as found in [19], are affected by
the transverse forces. Our starting point is Eq. (6.95), which we recall here:

q2
0D0ϕ(z)

1− zϕ(z) = 1 + (λ+ ν)ϕ2(z) + (1 + γ2)λνϕ2(z)2

1 + (1 + γ2) νϕ2(z)
. (6.100)

The system loses ergodicity for λ ≥ 4q2
0D0. In the glass state close to the ergodicity

breaking we set λ = 4q2
0D0(1 + ε) with ε≪ 1, and we obtain

lim
t→+∞

ϕ(t) = 1
2
(
1 + ε1/2

)
. (6.101)

If instead we set
λ = 4q2

0D0 (1− ε) (6.102)
we are in the ergodic phase close to the glass transition. To describe the approach of
ϕ to the plateau we assume, in the limit ε→ 0 the following scaling form, taken from
Eq. (6.101):

ϕ(t) = 1
2 + ε1/2g(τ), (6.103)
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with τ ≡ εαt a rescaled time. We begin by assuming that α > 1 and we shall later
check that this is self-consistently correct. When considering the Laplace transform, we
use a rescaled variable z ≡ εαζ. The Laplace transforms of ϕ(t) and ϕ2(t) are therefore

ϕ(ζ) = ε−α
[

1
2ζ + ε1/2g(ζ)

]
,

ϕ2(ζ) = ε−α
[

1
4ζ + ε1/2g(ζ) + εg2(ζ)

]
.

(6.104)

We thus substitute Eq. (6.104) into Eq. (6.100) and search for the leading order in ε.
To do so, we assume that we are in a regime where |ε1/2g(τ)| ≪ 1. The orders ε0 and
ε1/2 are self-consistently satisfied, while at order ε we obtain

8ζg2(ζ)− 4g2(ζ) = −1
ζ
. (6.105)

This is the same equation as that obtained in equilibrium [19]. The exponents con-
trolling the approach to and the departure from the plateau are left unchanged by the
transverse dynamics.

For completeness, we also recall how to compute these exponents below. For the
early β-relaxation we take

g(τ) ≡ a0τ
−a (6.106)

for τ ≪ 1, which implies that

g(ζ) = a0ζ
a−1Γ(1− a),

g2(ζ) = a2
0ζ

2a−1Γ(1− 2a),
(6.107)

for ζ ≫ 1, with Γ(x) ≡
∫+∞

0 tx−1e−tdt the gamma function. Substitution into Eq. (6.105)
yields to leading order in ζ

4a2
0ζ

2a−1
[
2Γ(1− a)2 − Γ(1− 2a)

]
= 0. (6.108)

This equation has two solutions a = −1 and a = 0.395. Among these, we retain only
the physical one with a = 0.395. This solution is consistent with the earlier assumption
that α > 1. In fact, if we want

ϕ(t) = 1
2 + a0t

−a (6.109)

to hold, then we must have α = 1/2a > 1. We also assess in which range of times this
solution is valid. Since we want |ε1/2g(τ)| ≪ 1 and τ ≪ 1 we must have

ε
1

2aa
1/a
0 ≪ τ ≪ 1, (6.110)

which implies
a

1/a
0 ≪ t≪ ε−1/2a. (6.111)

For the late β-relaxation we assume

g(τ) ≡ −b0τ
b (6.112)
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for τ ≫ 1, which implies that

g(ζ) = −b0ζ
−b−1Γ(1 + b),

g2(ζ) = b2
0ζ

−2b−1Γ(1 + 2b),
(6.113)

for ζ ≪ 1. Substitution in Eq. (6.105) yields to leading order in ζ

4a2
0ζ

−2b−1
[
2Γ(1 + b)2 − Γ(1 + 2b)

]
= 0. (6.114)

This equation has the solution b = 1. We also assess in which range of times this
solution is valid. Since we want |ε1/2g(τ)| ≪ 1 and τ ≫ 1 we must have

1≪ τ ≪ ε
1
2b b

−1/b
0 , (6.115)

which implies
ε−1/2a ≪ t≪ ε− 1

2a
− 1

2b b
−1/b
0 . (6.116)

This approach does not allow us to compute the values of the two constants a0 and
b0. These will however exhibit a dependence on γ, which, we expect, should result in
a marginal shortening of the time required to approach and leave the plateau in the
temperature regime close to the ergodicity breaking transition.

Divergence of the relaxation time

In this subsection we show that the exponent characterizing the divergence of the
relaxation time close to criticality is also unchanged by the transverse forces.

We start by assuming the following form for ϕ(t) for t≫ a
1/α
0 :

ϕ(t) ≡ 1
2e

2ε1/2g(εαt). (6.117)

This expression naturally gives Eq. (6.103) whenever |ε1/2g(εαt)| ≪ 1, which corre-
sponds to the plateau regime investigated earlier. When t≫ ε− 1

2a
− 1

2b b
−1/b
0 we have

ϕ(t) = 1
2e

−2b0εα+1/2t. (6.118)

The Laplace transforms read

ϕ(z) = 1
2(z + 2b0εα+1/2) ,

ϕ2(z) = 1
4(z + 4b0εα+1/2) .

(6.119)

Using the scaling z = εα+1/2ζ we see that, to leading order in ε, Eq. (6.119) satisfies
Eq. (6.100), which confirms that the ansatz of Eq. (6.118) is correct. Our schematic
mode-coupling theory therefore predicts that, close to the critical temperature TMCT,
the relaxation time τα diverges as a power law,

τα ∼ (T − TMCT)−1/2a+1/2b, (6.120)

with 1
2a + 1

2b ≈ 1.7658, which is again the same exponent as in equilibrium [19].
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6.3.6 Beyond the schematic approximation

Using insights gained from the schematic approximation, we now prove some general
properties of the dynamics with transverse forces, as derived in Eq. (6.78), in particular
regarding the location of the glass transition and the acceleration of the dynamics.

Location of the glass transition

To locate the glass transition, we assume that when ergodicity breaking occurs, the
plateau is the same for all wavevectors with the same modulus:

ϕ(q, z → 0) ≈ ϕ∞(q)
z

,

K11(q, z → 0) ≈ K33(q, z → 0) ≈ K∥,∞(q)
z

,

K22(q, z → 0) ≈ K⊥,∞(q, z → 0)
z

.

(6.121)

Taking the limit z → 0 in Eq. (6.78), and using Eq. (6.121), the contribution from
transverse forces cancels, leading to

q2D0
ϕ∞(q)

1− ϕ∞(q) = K∥,∞(q). (6.122)

This equation is the same as the one governing the equilibrium case. This establishes
that the glass transition takes place for the same value of the parameters (density,
temperature) as in equilibrium when γ = 0.

Acceleration in the ergodic phase

In the ergodic phase, however, some acceleration can be achieved even if the location of
the glass transition is the same. To support this assertion, we begin by self-consistently
assuming that transverse forces accelerate the decay of the dynamical structure factor.
In practice, we start from the postulate that

ϕf(q) ≤ ϕeq, f(q), (6.123)

where ϕf ≡ ϕ(q, z = 0) ≡
∫+∞

0 dτϕ(q, τ) is the time-integrated normalized dynamical
structure factor, and ϕeq,f is the same quantity for equilibrium dynamics, obtained from
Eq. (6.78) when γ = 0. Due to the mode-coupling expression of the memory kernel,
Eq. (6.70), it follows that Kij,f(q) ≡ Kij(q, z = 0) ≤ Kij,eq,f(q) ≡ Kij,eq(q, z = 0). This
means that

1 + (1 + γ2)K22,f

(1 +K11,f)(1 +K22,f) + γ2K11,fK22,f
≥ 1

1 +K11,eq,f
, (6.124)

where we omitted the dependence on the q argument for clarity. This inequality self-
consistently proves that the transverse force dynamics accelerates the decay rate of ϕ
in the ergodic phase.
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Limiting behavior for large γ

We explore the asymptotic behavior of the relaxation in the ergodic in the presence of
very strong transverse forces. In the ergodic phase, the z → 0 limit of Eq. (6.78) reads

1 = −D0q ·
 1 + (1 + γ2)K22,f

(1 +K11,f)(1 +K22,f) + γ2K11,fK22,f
e1 ⊗ e1 + 1

1 +K33,f
e3 ⊗ e3

 · qϕf.

(6.125)

The analysis of the exponential relaxation in the schematic approximation suggests
that, in the limit γ →∞, one should expect

lim
γ→∞

ϕf = ϕf

γ
, (6.126)

where ϕf is a constant that does not depend on γ. Our starting point is the assumption
that a similar scaling holds for the memory kernels, namely

lim
γ→∞

Kii,f = Kii,f

γ
, (6.127)

with Kii,f a quantity independent from γ. This scaling can be explicitly checked in the
case of exponential relaxation. If we substitute the asymptotic behaviors of Eqs. (6.126,
6.127) into Eq. (6.125), the dependence on γ disappears. This result consistently
demonstrates that the relaxation time decreases linearly in γ−1 in the limit of strong
transverse forces. Note that, by contrast to the discussion in Sec. 6.3.5 which was
limited to exponential decays, this result is valid over the whole ergodic phase.

In this section, we have investigated the relaxation properties of the collective
density modes in the presence of transverse forces, demonstrating the existence of
a speedup, and establishing its asymptotic behavior for strong drift. We have also
realized that transverse forces do not affect the location of the transition to the noner-
godic regime. This, in turn, triggers a number of questions related to the microscopic
mechanisms and dynamical pathways opened by transverse forces that support these
observed collective behaviors. To answer this question, we turn to the analysis of the
motion of an individual particle. The transport coefficients of this tracer, along with
the diffusivity and mobility tensors, will help us shape a qualitative picture.

6.4 Dynamics of a tracer with transverse forces in the
mode-coupling approach

We now analyze the motion of a tracer within the mode-coupling framework. We first
introduce the general setting and the relevant dynamical quantities.

Following Ernst and Dorfman [86], we consider the motion of a tagged tracer particle
with label 0 in a liquid of N particles with transverse forces. The tracer initial position
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at time t = 0, r0, is fixed at the origin, and it influences the distribution of the
surrounding bath. The initial condition for the probability distribution of the total
system thus reads

PN+1(rN+1, t = 0) = V δ(r0)ρB(rN+1). (6.128)

Averages over the initial distribution PN+1(rN+1, 0) will be denoted by ⟨. . .⟩0. Averages
over the Boltzmann distribution are denoted by ⟨. . .⟩, as usual. Starting from t = 0, a
constant external force Fext is applied on the tracer. The evolution operator becomes
Ωext
γ , defined as

Ωγ,ext =Ωγ + δΩext

=D0
∑
i

∇i · [∇i − (1 + γA) βFi]−D0∇0 · βFext.
(6.129)

We denote the Fourier transform of the tracer density as

n0(q) ≡ e −iq·r0 . (6.130)

The large-time, long-wavelength limit of this Fourier transform can be used to obtain
relevant transport coefficients. A small q expansion of the time derivative of Eq. (6.130)
yields constitutive equations of motion for the tracer

⟨∂tn0(q, t)⟩0 = −iq · ⟨ṙ0(t)⟩0 − q ·
∫ t

0
dτ⟨ṙ0(τ)⊗ ṙ0(0)⟩0 · q

− q · ⟨ṙ0(t)⊗ r0⟩0 · q +O(q3)
≈ −iq · µ · Fext − q ·D · q.

(6.131)

In the second line, we have taken a large time limit, t → ∞, and used the definition
of the diffusivity tensor D, given by Eq. (6.13), and the mobility tensor µ, given by
Eq. (6.14). Note that the mobility and the diffusivity are computed within a linear
response formalism, where the intensity of the external force is small, |Fext| → 0.
Moreover, as for the weak coupling analysis of the tracer, we are interested in the
expression of the diffusivity tensor obtained for Fext = 0, and neglect the dressing of
the diffusivity that comes from the presence of the dragging external force.

6.4.1 Equation of motion of the tracer

We introduce a projection operator tailored to the space of the tracer density fluctua-
tions

P0 ≡
∑

q
. . . n∗

0(q)⟩⟨n0(q) . . . (6.132)

and the associated orthogonal projector Q0 ≡ I − P0. Note that, in contrast with
the other projection operators used in this work, P0 contains a summation over all
wavevectors, since these are all included inside the δ-function of the initial condition
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in Eq. (6.128). With this definition, we have

P0PN+1(rN+1; t = 0) = 1
V

∑
q
n0(q)⟩⟨n∗

0(q)V δ(r0)⟩

=
∑

q
n0(q)⟩

= V δ(r0)ρB(rN+1)
= PN+1(rN ; t = 0),

(6.133)

and thus
Q0PN+1(rN , t = 0) = 0. (6.134)

Our goal is to derive an equation of motion for the evolution of the average tracer
density, ⟨n0(q) e Ωγ,extt⟩0. In this notation, the probability distribution PN+1(rN+1, 0)
stands to the right of the evolution operator e Ωγ,extt, which acts on the said distribu-
tion. The time derivative of this quantity reads, after a Fourier transformation〈
n0(q)Ωγ,ext

1
z − Ωγ,ext

〉
0

=
〈
n0(q)Ωγ,extP0

1
z − Ωγ,ext

〉
0

+
〈
n0(q)Ωγ,extQ0

1
z − Ωγ,ext

〉
0

=
⟨n0(q)Ωγ,extn

∗
0(q)⟩

+
〈
n0(q)Ωγ,extQ0

1
z − Ωγ,extQ0

Q0Ωγ,extn
∗
0(q)

〉n0(q, z),

(6.135)

with n0(q, z) =
〈
n0(q) 1

z−Ωγ,ext

〉
0
. We used the same resolvent identity as in Eq. (6.60)

(with P0 and Q0 instead of P and Q), namely

1
z − Ωγ,ext

= 1
z − Ωγ,extQ0

+ 1
z − Ωγ,extQ0

Q0Ωγ,extP0
1

z − Ωγ,ext
, (6.136)

together with the fact that
〈
. . .Q0

1
z−Ωγ,extQ0

〉
0

= 0. The frequency matrix reads

⟨n0(q)Ωγ,extn
∗
0(q)⟩ = −D0q

2 − iD0βq · Fext, (6.137)

and it contains the mobility of a free tracer, D0β.

The memory kernel reads instead〈
n0(q)Ωγ,extQ0

1
z −Q0Ωγ,extQ0

Q0Ωγ,extn
∗
0(q)

〉
=
〈
n∗

0(q)Ω−γ,extQ0
1

z −Q0Ω−γ,extQ0
Q0Ω−γ,extn0(q)

〉

= −iq ·D2
0

〈
e iq·r0

[
(1− γA) · βF0 − iq + βFext

]
Q0

1
z −Q0Ω−γ,extQ0

×Q0∇0 e −iq·r0

〉
·
[
(1− γA) · iq− βFext

]
.

(6.138)
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The first term Fext on the right hand side does not contribute, since it belongs to the
space of the tracer’s density modes. It thus vanishes when the projector Q0 acts on
its right. To extract the mobility of the tracer, we are interested in terms linear in
Fext. One of these terms comes from the last Fext appearing on the right-hand side
of Eq. (6.138). Another term comes in principle from the expansion of the operator
Ωγ,ext. However, the physical meaning of this term is a dressing of the diffusion matrix
by means of the external force, as it yields a contribution proportional to q2. The
tracer’s equation of motion can thus be cast in the form

z⟨n0(q, z)⟩0 − 1 = [−iq · µ(q, z) · Fext − q ·
[
D(q, z) + |Fext|δD(q, z)

]
· q]n(q, z),

(6.139)

where δD(q, z) is the correction to the diffusivity tensor due to the applied external
force. We are not interested in this term, and we focus on the mobility and diffusivity
tensors, that read respectively

µ(q, z) = D0β
[
1− (1− γA) K̃0(q, z)

]
, (6.140)

and
D(q, z) = D0

[
1− (1− γA) K̃0(q, z)(1− γA)

]
. (6.141)

The tracer-memory kernel can be expressed in terms of the projected longitudinal tracer
force density Fourier modes

K̃0(q, z) ≡ D0β
2
〈

j∗
0(q)Q0

1
z −Q0Ω−γQ0

Q0j0(q)
〉
, (6.142)

with Q0j0(q) ≡ Q0F0 e −iq·r0 . Note that due to the projection operator we have
. . .Q0F0 e −iq·r0⟩ = . . .Q0T∇0 e −iq·r0⟩ and it is the latter form that is used in the
definition of the irreducible evolution operator, Eq. (6.146) and the derivation of the
mode-coupling vertex, Eq. (6.149).

Equations (6.140, 6.141) express the transport coefficients of the tracer as a function
of the current-current, memory tensor K̃0. As usual in a mode-coupling approach, we
first give an irreducible representation of this memory kernel and then expand it within
the mode-coupling approximation.

The reduction of K̃ is achieved by introducing an irreducible evolution operator

Ωirrs
−γ = Ω−γ +D0β

2∑
k
Q0j0(k)⟩ · (1− γA) · ⟨j∗

0(k)Q0 (6.143)

and exploiting the identity

1
z −Q0Ω−γQ0

= 1
z − Ωirrs

−γ

1− D0β
2

V

∑
k
Q0j0(k)

〉
· (1− γA) ·

〈
j∗
0(k)Q0

1
z −Q0Ω−γQ0

.
(6.144)

We obtain from Eq. (6.142)

K̃0(q, z) = [1 + K0(q, z)(1− γA)]−1 ·K0(q, z), (6.145)
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where we have introduced the irreducible memory kernel for the tracer

K0(q, z) ≡ β2D0

〈
j∗
0(q)Q0

1
z − Ωirrs

−γ
Q0j0(q)

〉
. (6.146)

As a consequence of the linear response treatment in the definition of the K0(q, z) the
evolution operator involves the dynamics with transverse forces in the absence of the
external perturbation. This allows us to simplify the tracer’s memory kernel, as was
done previously for the memory kernel related to the dynamics structure factor, K(q, z).
Before discussing further this point, we apply the mode-coupling approximation scheme
to K0.

6.4.2 Mode-coupling expansion of the tracer’s memory kernel

The mode-coupling expansion can be carried out in an analogous way to what was done
in Sec. 6.3.3. The tracer’s current is expanded along the following density product:

Q0j0(q) ≈
∑

k

n(k)n0(q− k)
NS(k) ⟨n∗(k)n∗

0(q− k)Q0j0(q)⟩ . (6.147)

The Gaussian approximation now becomes〈
n∗(k′)n∗

0(q− k′) e Ωirrs
−γ tn(k)n0(q− k)

〉
≈
〈
n∗(k′) e Ω−γtn(k)

〉 〈
n∗

0(q− k′) e Ω−γtn0(q− k)
〉

+
〈
n∗(k′) e Ω−γtn0(q− k)

〉 〈
n∗

0(q− k′) e Ω−γtn(k)
〉

= NS(k, t)Fs(q− k, t)δk,k′ + S(k, t)S(q− k, t)δk′,q−k

≈ NS(k, t)Fs(q− k, t)δk,k′ .
(6.148)

In the last passage we have neglected the term of order 1 compared to the term of order
N2. In addition, we noted that since the tracer is equivalent to any other particle, we
have

〈
n∗

0(q− k′) e Ω−γtn0(q− k)
〉

= Fs(q − k), with the self-intermediate correlation
function Fs defined in Eq. (6.45).

We now compute the average in Eq. (6.147) with the help of a convolution approx-
imation

⟨n(k)∗n∗
0(q− k)Q0j0(q)⟩ = ⟨n(k)∗n∗

0(q− k)j0(q)⟩ − ⟨n(k)∗n∗
0(q− k)n0(q)⟩ ⟨n∗

0(q)j0(q)⟩
= T

〈
n(k)∗n∗

0(q− k)∇0 e −iq·r0
〉

− TS(k)
〈
n∗

0(q)∇0 e −iq·r0
〉

= −T
〈
∇0 [n(k)∗n∗

0(q− k)] e −iq·r0
〉

+ TS(k)
〈
∇0 [n∗

0(q)] e −iq·r0
〉

= −iT [k + (q− k)S(k)− qS(k)]
= −iTρ0S(k)c(k)k,

(6.149)
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with ρ0c(k) = 1− 1
S(k) the direct correlation function. With these results, substitution

of Eq. (6.147) in the irreducible memory kernel of Eq. (6.146) yields

K0(q, t) ≈ D0ρ0

∫
k

k⊗ kc(k)2Fs(q− k, t)S(k, t). (6.150)

This is the mode-coupling expression of the tracer’s memory kernel. Using the sym-
metries of the dynamics, as done in Sec. 6.3.3, one can show that K0 is diagonal in the
A− q basis given by Eq. (6.68):

K0(q, t) =
∑
i

K0,ii(q, t)ei ⊗ ei. (6.151)

Now that we have a diagonal decomposition of the tracer’s memory kernel, we can
focus on physical quantities of interest for the tracer dynamics.

6.4.3 Self-intermediate scattering function

The dynamics of the self-intermediate scattering function Fs can be read from the
tracer’s dynamics. It is given by

zFs(q)− 1 = −D0q ·
 1 + (1 + γ2)K0,22

(1 +K0,11)(1 +K0,22) + γ2K0,11K0,22
e1 ⊗ e1

+ 1
1 +K0,33

e3 ⊗ e3

 · qFs(q, z).
(6.152)

This equation of motion is formally similar to Eq. (6.78), with the collective memory
kernel being replaced by the tracer’s memory kernel. For a wavevector q lying in the
(xy) plane, we get, using an inverse Laplace transform

∂tFs+D0q
2Fs+D0q

2(1+γ2)K0,22∗Fs = −
[
(K0,11 +K0,22) + (1 + γ2)K0,11 ∗K0,22

]
∗∂tFs,

(6.153)
where the dependence on (q, t) has been omitted for clarity. This equation was an-
nounced in a recent work (Eq. (11) in [108]). The properties of this dynamics can be
analyzed in the same way illustrated for the dynamical structure factor in Sec. 6.3.5.

6.4.4 Diffusion tensor

The diffusion tensor at any finite wavevector and frequency is obtained by substituting
the mode-coupling expression for K0, given in Eq. (6.151), into Eq. (6.141). The result

114



Mode-coupling and weak-coupling theory for transverse forces

reads, in the A− q basis introduced in Eq. (6.68)

D(q, z) = D0

 1 + (1 + γ2)K0,22

(1 +K0,11)(1 +K0,22) + γ2K0,11K0,22
e1 ⊗ e1 + 1

1 +K0,33
e3 ⊗ e3

+ γ
K0,11 +K0,22 + (1 + γ2)K0,11K0,22

(1 +K0,11)(1 +K0,22) + γ2K0,11K0,22
[e1 ⊗ e2 − e2 ⊗ e1]

+ (1 +K0,11)K0,22 +K0,11(K0,22 − 1)γ2

(1 +K0,11)(1 +K0,22) + γ2K0,11K0,22
e2 ⊗ e2

.
(6.154)

The expression of the diffusion tensor is one of the main results of this work. From the
large wavelength, small frequency limit of Eq. (6.154) we obtain the diffusion matrix
D. In Cartesian coordinates, it reads

D = D∥,x [ex ⊗ ex + ey ⊗ ey] +D∥,zez ⊗ ez +D⊥ [ey ⊗ ex − ez ⊗ ey] . (6.155)

We now discuss the expression and the behavior of the different diffusion constants
that appear in the diffusion tensor D.

Longitudinal diffusion

The dynamics with transverse forces is anisotropic. As a consequence, there are two
types of longitudinal diffusion constants, one related to the diffusion in the (xy) plane
(within which rotational invariance is preserved), D∥,x and one related to the diffusion
along the z direction, D∥, z. Their expressions are

D∥,x(γ) = D0
1 + (1 + γ2)K∞

0,11

(1 +K∞
0,11)(1 +K∞

0,22) + γ2K∞
0,11K

∞
0,22

D∥,z(γ) = D0
1

1 +K∞
0,33

,

(6.156)

where we introduced the notation K∞
0,ii ≡ K0,ii(q→ 0, z → 0) to denote the long wave-

length, zero frequency of the tracer’s memory kernel. This coefficient reads explicitly

K∞
0,ii = D0

ρ0

∫ +∞

0
dt
∫

k
[kiρ0c(k)]2Fs(−k, t)S(k, t). (6.157)

For γ = 0, the equilibrium result is duly recovered:

Daa,eq = D0
1

1 +K∞
0,∥,eq

, (6.158)

for a = x, y, z. When γ ̸= 0 the anisotropy of the dynamics is revealed through the
different expressions of the diffusion constants.

The dynamics is indeed accelerated. If we assume that in the ergodic phase K∞
0,ii ≤

K∞
0,ii,eq, we self-consistently obtain Daa(γ) ≥ Daa(0).
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In the ergodic phase in the limit of strong drive, the memory kernel scales as γ−1.
This implies that the efficiency of transverse forces with respect to the equilibrium
dynamics, computed as the ratio D(γ) ≡ ∑a=x,y,zDaa(γ) over D(0), grows as

D(γ)
D(0) ∼ γ. (6.159)

We now investigate two limiting cases: in the high temperature regime, the memory
kernels vanish because the fluid enters an effectively noninteracting limit and therefore
D(γ) = D0, while at T = TMCT the memory kernels diverge as predicted by the
schematic approach of Sec. 6.3.4, implying that D(γ) = 0 and dynamical arrest occurs.
We have therefore

lim
T→∞

D(γ)
D(0) = c(γ),

lim
T→TMCT

D(γ)
D(0) = 1,

(6.160)

With c(γ) > 1 a constant that depends on the intensity of the driving force. These con-
ditions, together with the acceleration in the ergodic phase, demonstrate that the ratio
of the diffusion constants D(γ)

D0
exhibits a maximum as a function of the temperature

in the ergodic phase. This maximum is observed in numerical simulations [108].

Odd diffusivity

The odd diffusion constant is encoded in the antisymmetric part of the diffusivity
tensor:

D⊥(T, γ) = −D0γ
K∞

0,11 +K∞
0,22 + (1 + γ2)K∞

0,11K
∞
0,22

(1 +K∞
0,11)(1 +K∞

0,22) + γ2K∞
0,11K

∞
0,22

. (6.161)

For an asymptotically large driving, γ →∞, the odd diffusion constant grows linearly
in γ, D⊥(γ, T ) ∼ γ. This suggests that strong transverse forces manifest themselves
with an increasingly swirling motion.

Close to ergodicity breaking where the memory kernel diverges, we obtain

lim
T→TMCT

D⊥ = −γD0. (6.162)

Therefore, even if the longitudinal diffusion constant associated to particle transport
goes to 0 at the critical temperature, the odd diffusion constant remains nonzero.
Together with the vanishing of the diffusion constant, this suggests a physical picture
where particles perform a swirling motion inside the permanent local cage made by
their neighbors. An analogous situation can be shown to arise in the much simpler
model of a particle in an harmonic well under the action of transverse forces [108].

6.4.5 Mobility tensor

The mobility tensor is an alternative quantity characterizing the nature of the dynamics
with a physical content distinct from that of the diffusivity tensor due to the breaking

116



Mode-coupling and weak-coupling theory for transverse forces

of the Einstein relation. The mobility tensor is obtained from Eq. (6.140), using the
mode-coupling expansion of the tracer’s memory kernel given in Eq. (6.151). The result
reads

µ(q, z) = D0β

 1 +K22

(1 +K11)(1 +K22) + γ2K11K22
e1 ⊗ e1 + 1

1 +K33
e3 ⊗ e3

+ γ (K0,11e2 ⊗ e1 −K0,22e1 ⊗ e2)
(1 +K11)(1 +K22) + γ2K11K22

+ 1 +K11

(1 +K11)(1 +K22) + γ2K11K22
e2 ⊗ e2

.
(6.163)

In the small frequency and large wavelength limit of these expression, we obtain the
mobility of the tracer,

µ = µ∥,x [ex ⊗ ex + ey ⊗ ey] + µ∥,zez ⊗ ez
+ µ⊥ [ex ⊗ ey − ey ⊗ ex] ,

(6.164)

with the longitudinal mobilities µ∥,x,µ∥,z, and odd mobility µ⊥ given by

µ∥,x = D0β
1 +K∞

0,11

(1 +K∞
0,11)2 + γ2K∞

0,11
,

µ∥,z = D0β
1

1 +K∞
0,33

,

µ⊥ = −γD0β
K∞

0,11

(1 +K∞
0,11)2 + γ2K∞

0,11
.

(6.165)

The anisotropic character of transverse forces in three dimensions manifests itself
through the fact that µ∥,z ̸= µ∥,x. In the large γ-limit, all nonzero entries of the
mobility tensor converge (in modulus) to the mobility of a free tracer, D0β. This
is in contrast with the behavior of the diffusivity tensor, whose nonzero entries grow
linearly in γ. This is a consequence of the breakdown of the fluctuation-dissipation
theorem, arising from the nonequilibrium nature of the dynamics. A variant of the
fluctuation-dissipation theorem survives for the longitudinal components of the diffu-
sion and mobility tensor, as [µ(1+γA)]aa = β[D]aa with a = x, y, z. This variant of the
fluctuation-dissipation theorem was also derived in the dynamical mean-field treatment
of transverse forces [109].

As the glass transition is approached, all components of the mobility tensor vanish.
Physically, this means that in the dynamically arrested glass, a weak external force
cannot set the particles in motion, neither in the longitudinal nor in the transverse
direction with respect to the external force.

The vanishing of longitudinal and odd mobilities is one of the facets of the glass
transition in the mode-coupling theory of transverse forces. Another facet is the diver-
gence of the viscosity tensor, which will be explored in the next section.
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6.5 Odd viscosity

This section is devoted to the study of the emerging odd viscosity [12, 13, 85, 127, 99].
Following [253, 85], we compute the viscosity tensor in the long wavelength and long
times limits by looking at the response of the stress to an external perturbation. To
do so, we define a microscopic stress tensor in the presence of transverse forces and
develop its linear response theory, leading to the definition of the viscosity tensor, and
in particular to the identification of its odd component.

6.5.1 Stress tensor and transverse forces

Following [253], we start by defining the microscopic stress tensor in the presence of
transverse forces from the equation

∂tn(q) = Ω†
γn(q) ≡ −D0βqaqbσab(q). (6.166)

This identity, which only holds when inserted into the average ⟨. . .⟩, yields

σab(q) ≡
∑
i

[
i(δbc + γAbc)

qaFi,c
q2 + Tδab

]
e −iq·ri . (6.167)

For γ = 0, we recover the expression of the microscopic equilibrium stress tensor,
σeq(q), given by

σeq
ab(q) ≡

∑
i

[
i
qaFi,b
q2 + Tδab

]
e −iq·ri . (6.168)

For equilibrium dynamics, the viscosity is defined as the response function of Qσeq to
particle current fluctuations, as discussed in [130] for underdamped Langevin dynamics
and extended in [253] for the overdamped case. In the presence of transverse forces one
must substitute σeq with σ given by Eq. (6.167). This gives rise to coupling between
parallel and longitudinal components of the stress tensor, which eventually results in
odd viscosity.

Note that the projection of the stress tensor in the space orthogonal to the den-
sity fluctuations, Qσab(q), is related with its equilibrium counterpart by the following
relation

Qσab(q) = Qσeq
ac(δcb − γAcb), (6.169)

where the Einstein summation convention is being used. We also have

Qja(q) = −iqbQσeq
ba(q), (6.170)

with Qja(q) the projected force density Fourier modes defined in Eq. (6.54).

In the next section, we pursue our program by developing a linear response theory
of the microscopic stress.
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6.5.2 Linear response theory

We consider the perturbation produced by a weak external velocity field made by
a single Fourier mode v(r, t) ≡ v(t) e iq·r. The evolution operator associated to the
system is now Ωγ + δΩ, with

δΩ ≡ −
∑
i

∇i · v(t) e iq·ri . (6.171)

As a consequence of the perturbation, the probability distribution associated to the sys-
tem becomes ρB(rN) + δρ(rN , t). The equation of motion for the perturbation δρ(rN , t)
reads, to linear order,

∂tδρ(rN , t) = Ωγδρ(rN , t) + δΩ(t)ρB(rN). (6.172)

The solution to this equation is given by

δρ(rN , t) =
∫ t

−∞
dτ e Ωγ(t−τ)δΩ(τ)ρB(rN)

= − β
V

∫ t

−∞
dτ e Ωγ(t−τ)vb(τ)iqaσeq∗

ab (q)ρB(rN).
(6.173)

The average of the stress tensor in linear response reads

⟨Qσab(q, t)⟩lr = − β
V

∫ t

−∞
dτiqcvd(τ)

〈
σeq∗
cd (q) e Ω−γ(t−τ)Qσαβ(q)

〉
= − β

V

∫ t

−∞
dτiqcvd(τ)

〈
σeq∗
cd (q) e Ω−γ(t−τ)Qσab(q)

〉
θ(t− τ).

(6.174)

The average ⟨. . .⟩lr is an average over the dynamics described by the operator Ωγ + δΩ,
neglecting terms of order higher than linear in v(t). We are interested in computing
the variation of the stress with respect to the small perturbation. To do this, it is
more suitable to work in Fourier space, by denoting the Fourier transform of a function
f(t) as f(ω) ≡

∫+∞
−∞ f(t) e −iωt. Within the linear response framework, we can take

the perturbation v to be a monochromatic plane wave, i.e. v(t) = v(ω) e −iωt+0+t.
The symbol 0+ has to be understood as a small positive infinitesimal quantity used to
ensure that the perturbation goes to 0 at t = −∞. Substitution into Eq. (6.174) yields

∂ ⟨Qσab(q, ω)⟩lr

∂iqcvd
= β

V

〈
σeq∗
cd (q) 1

−iω − Ω−γ
Qσab(q)

〉
. (6.175)

This is the response ofQσab(q) to an external velocity gradient. To obtain the viscosity,
we need to work out the response of Qσab(q) to a change in the gradients of the
particle current. However, within linear response, we can work out a relation between
the particle currents and the applied velocity field, thus making the calculation of the
viscosity tensor possible. This is done next.
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6.5.3 The viscosity tensor

Following [130, 64, 253], we introduce the average particle current J(q, t), governing
the evolution of the density mode n(q)

⟨∂tn(q, t)⟩lr ≡ iρ0q · J(q, t). (6.176)

The left hand side of Eq. (6.176) splits into

⟨∂tn(q, t)⟩lr = ⟨n(q, t)δΩ(t)⟩+ ⟨n(q, t)Ωγ⟩lr , (6.177)

which implies
Ja(q, t) = va(q, t)−

D0β

ρ0
qb ⟨σab(q, t)⟩lr . (6.178)

Thus, the particle current corresponds to sum of the imposed solvent velocity v and of
a term that originates from the change in the stress tensor.

The viscosity tensor is defined as the response function describing the change of the
projected stress tensor due to the gradient of the average particle current [130]:

ηabcd(q, ω) ≡ ∂ ⟨Qσab(q, ω)⟩lr

∂iqcJd(q, ω) . (6.179)

Our aim is now to show that the viscosity tensor is related to the following corre-
lation function,

C irr
abcd(q, ω) ≡ β

V

〈
σeq∗
ab (q)Q 1

−iω − Ωirr
−γ
Qσcd(q)

〉
, (6.180)

which encodes the correlation between the equilibrium stress tensor and the stress
tensor in presence of transverse forces, evolving with the irreducible operator Ωirr

−γ
defined in Eq. (6.58).

We first introduce an auxiliary correlation function CQ
abcd,

CQ
abcd ≡

β

V

〈
σeq∗
ab (q)Q 1

−iω −QΩ−γQ
Qσcd(q)

〉
, (6.181)

which is the analogue of C irr
abcd but evolves with the projected evolution operator

QΩ−γQ. Using the operator identity

1
−iω −QΩ−γ

= 1
−iω − Ω−γ

+ 1
−iω − Ω−γ

PΩ−γ
1

−iω −QΩ−γ
, (6.182)

we obtain

∂⟨Qσab(q)⟩lr
∂iqcvd

=
δceδdg − D0β

S(q)qf
∂⟨n(q, t)⟩lr
∂iqcvd

(δfg + γAfg)qe

CQ
egab. (6.183)
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On the other hand, the correlators CQ
abcd and C irr

abcd are related to each other. We can
exploit the resolvent identity given by Eq. (6.60) and the fact that the operator δΩ−γ
defined in Eq. (6.59) can be expressed in terms of the stress tensor through Eq. (6.170),

δΩ−γ = D0β
2

N
qaqdQσeq

ab(q)⟩[δbc − γAbc]⟨σeq
dcQ. (6.184)

This yields

C irr
abcd = CQ

abcd −
D0β

2

ρ0V
qeqf⟨σeq∗

ab (q) 1
−iω −QΩ−γQ

Qσeq
ef (q)⟩(δfg − γAfg)C irr

fgcd

= CQ
abcd −

D0β

ρ0
qeqfC

Q
abegC

irr
fgcd.

(6.185)

This equation is analogous to the relation between the memory kernels K and K̃
given by Eq. (6.62). Contracting both sides of Eq. (6.185) with the quantity inside the
brackets in Eq. (6.183) and rearranging the terms gives

∂⟨Qσab(q)⟩lr
∂iqcvd

=
δceδdf + D0β

ρ0
qeqg

∂⟨Qσgf (q)⟩lr
∂iqcvd

− qeqg
D0

ρ0S(q)
∂⟨n(q)⟩lr
∂iqcvd

(δgf + γAgf )
C irr

efab.

(6.186)
On the other hand, from Eq. (6.178) we have

∂iqeJf
∂iqcvd

= δceδdf + D0β

ρ0
qeqg

∂⟨Qσhf (q)⟩lr
∂iqcvd

− qeqg
D0

ρ0S(q)
∂⟨n(q)⟩lr
∂iqcvd

δgf .

(6.187)

Combining Eqs. (6.186, 6.187), using the chain rule and the definition of the viscosity
tensor given by Eq. (6.179) we obtain

∂iqeJf
∂iqcvd

ηabef (q, ω) =
∂iqeJf
∂iqcvd

− γqeqg
D0

ρ0S(q)
∂⟨n(q)⟩lr
∂iqcvd

Agf

C irr
efab(q, ω). (6.188)

This equation relates the irreducible stress-stress correlator with the viscosity. For
γ = 0, we recover the relation derived in [253],

ηabcd(q, ω) = β

V
⟨σeq∗

cd (q) 1
−iω − Ωirr

0
Qσeq

ab(q)⟩. (6.189)

When γ ̸= 0, and additional term stemming from the influence of the transverse forces
and proportional to the response of the density field to external currents appears.
Moreover, the stress-stress correlator C irr depends on γ both through the definition of
the stress σab and the dynamical evolution operator Ωirr

−γ.

In the hydrodynamic limit, when q → 0 and ω → 0, the second term on the right
hand side of Eq. (6.188) is subleading compared to the first one, leading to

ηabcd(q→ 0, ω → 0) = C irr
cdab(q→ 0, ω → 0). (6.190)

This equation relates the hydrodynamic viscosity with the stress-stress irreducible cor-
relator. In the next two sections, we use this formula to compute, within the mode-
coupling approximation, the shear and odd viscosities.
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6.5.4 Shear viscosity

We start with the shear viscosity ηxyxy. Due to the rotational invariance of the dynamics
in the (xy) plane, we evaluate the q → 0 limit with q = qex. From Eq. (6.190) we
obtain

ηxyxy = lim
q→0

lim
ω→0

β

V

〈
σeq∗
xy (q)Q 1

−iω − Ωirr
−γ
Qσeq

xy(q)
〉

− γ β
V

〈
σeq∗
xy (q)Q 1

−iω − Ωirr
−γ
Qσeq

xx(q)
〉
.

(6.191)

We now replace Qσeq
ab(q) with iQ qa

q2 jb(q). In this way, the stress-stress correlations is
expressed in terms of the projected force-force correlations, encoded by the memory
kernel K given by Eq. (6.61). We therefore get, using the A− q basis,

ηxyxy = lim
q→0

lim
ω→0

ρ0

D0β
[K22(qex,−iω)− γK21(qex,−iω)] . (6.192)

Using the expression of K given by the mode-coupling approximation, Eq.(6.70), and
the fact that within this approximation the off-diagonal terms in K are 0 in the A− q
basis, we have

ηxyxy = lim
q→0

lim
ω→0

ρ0

q2D0β
K22(qex,−iω)

= lim
q→0

ρ2
0

2q2β

∫ +∞

0
dt
∫

k
[ky(c(k)− c(|qex − k|))]2S(k, t)S(qex − k, t)

= 1
2β

∫ +∞

0
dt
∫

k
[k̂xkyρ0c

′(k)]2|S(k, t)|2

. (6.193)

In this expression, the dependence on γ enters through the dynamical evolution of
S(k, t). For γ = 0, rotational symmetry is restored, and we recover the equilibrium,
mode-coupling result [201]:

ηeq
xyxy = 1

60π2β

∫ +∞

0
dkk4

[
1

S(k)S
′(k)

]2

ϕ(k, t)2. (6.194)

Since the relaxation of S(k, t) is faster in the presence of transverse forces we have
ηxyxy(γ) ≤ ηeq

xyxy. Also, the shear viscosity diverges at the glass transition.

6.5.5 Odd viscosity

We now address the odd viscosity. We identify the following contribution as the odd
viscosity:

ηodd ≡
1
2 (ηxyxx − ηxxxy) . (6.195)

Physically, a nonzero ηodd means that attempts at compressing the system along the
x-direction generate shear flows in the (xy) plane. In a nonreciprocal fashion, shear
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stresses applied on the (xy) plane will generate an expansion of the liquid along the
x-direction. In equilibrium dynamics we have ηabcd = ηcdba and therefore ηodd = 0. We
address now how this situation changes when transverse forces are present.

Performing a computation similar to the one done in Eq. (6.192) gives

ηodd = 1
2 lim
q→0

lim
ω→0

ρ0

q2D0β
[(K21(qex,−iω) +K12(qex,−iω))

− γ(K11(qex,−iω) +K22(qex,−iω))].
(6.196)

Within the mode-coupling approximation, the first two terms on the right hand side
of Eq. (6.196) are 0. Taking the hydrodynamic limit of the mode-coupling expression
of Kii given by Eq. (6.70), we obtain

ηodd = −γ2 lim
q→0

lim
ω→0

ρ0

q2D0β
[K11(qex,−iω) +K22(qex,−iω)]

= − γ

4β

∫ +∞

0
dt
∫

k

[
[ρ0c(k) + kxk̂xρ0c

′(k)]2 + [k̂xkyρ0c
′(k)]2

]
S(k, t)2.

(6.197)

As the glass transition is approached the odd viscosity diverges. Physically, this means
that in the glassy state no form of transport is possible, and the transverse, as well as
the longitudinal, dynamical pathways through which the liquid relaxes, are blocked.
This directly impacts all viscosity coefficients.

The above discussion on the viscosity tensor concludes our mode-coupling treatment
of the dynamics of dense liquids with transverse forces. In the following Section, we
address the mode-coupling theory for a model of lifted active particles, with the goal of
providing some insights on the generalities of the results obtained for transverse forces.

6.6 Lifted active Brownian particles (ABP)

In this Section, we develop a mode-coupling theory for a model of lifted-active Brownian
particles, constructed following the examples provided in Section 1.3.2. The lifted-ABP
dynamics of N particles in two dimensions is given byṙi = v0ûi

θ̇i = v0βFi ·Aûi +
√

2Drχi,
(6.198)

where ûi = (cos θi, sin θi) is a unit vector denoting the direction of the self-propulsion
speed of particle i. The vector ûi forms an angle θi with respect to the x-axis. χi is a
Gaussian white noise, ⟨χi(t)χj(t′)⟩ = δijδ(t−t′). The self-propulsion orientation is sub-
jected to diffusion with a diffusion constant Dr as for standard ABPs, but is in addition
subjected to a drift that depends on the interaction force Fi = −∑i∇j ̸=iV (ri − rj)
between the particles in position space. The latter enforces the stationarity of the

Boltzmann distribution in the steady state because the matrix A ≡
[
0 −1
1 0

]
ensures

that the drift is always perpendicular to ûi. The drift term makes the ABP equations
of motion non-conventional, hence the ‘lifted-ABP’ name for Eq. (6.198).
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In the absence of interactions when Fi = 0, Eq. (6.198) describes freely diffusing
ABPs, with diffusion constant v2

0
2Dr

. When interactions are added, lifted-ABPs sample
the equilibrium Boltzmann distribution of the interacting system at fixed temperature
T , and this can be done at various values of v2

0
2Dr

. This is to be compared with the equi-
librium dynamics where temperature simultaneously fixes the Boltzmann distribution
and the free diffusion constant D0 = µ0T .

The evolution of the probability distribution ρ(rN , θN , t) of lifted-ABPs is governed
by the operator Ωv0 :

Ωv0 ≡−
∑
i

∇i · v0ûi +
∑
i

∂θi
[−v0βFi ·Aûi +Dr∂θi

] , (6.199)

so that
∂tρ(rN , θN , t) = Ωv0ρ(rN , θN , t). (6.200)

The steady state solution of Eq. (6.200) is a product of independent distributions
in the respective subspaces spanned by rN and by uN :

ρss = 1
(2π)N ρB(rN) = 1

Z
e−β

∑
i<j

V (ri−rj). (6.201)

with Z ≡ (2π)N
∫
drNe−β

∑
i<j

V (ri−rj).

The operator Ωv0 has the following property, which is a reflection of the breaking
of detailed balance reminiscent of Eq. (6.42) for transverse forces:

Ωv0f(rN , ûN)
〉

=
(
Ω†

−v0f(rN , ûN)
)〉
. (6.202)

We are interested in the evolution of the density mode n(q):

n(q, t) ≡
∑
i

e −iq·ri(t) (6.203)

and of its correlation function, the dynamical structure factor S(q, t):

S(q, t) ≡ 1
N
⟨n∗(q)n(q, t)⟩ . (6.204)

The following identity holds when inserted into an average:

∂tn(q, t) = Ω†
v0n(q, t), (6.205)

so that n(q, t) = e Ω†
v0n(q, t). This, together with Eq. (6.202) allows us to write

S(q, t) = 1
N

〈
n∗(q) e Ω−v0 tn(q)

〉
. (6.206)

Another important quantity is the time derivative of the density mode at t = 0:

∂tn(q) = −iv0qû∥(q), (6.207)
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which is the projection of the velocity ûi along the wavevector q:

û∥(q) ≡
∑
i

(q̂ · ûi) e −iq·ri . (6.208)

We are also interested in the self-intermediate scattering function Fs(q, t). Here we
re-write the definition (6.45) by putting the time dependence entirely into ni(q, t),

Fs(q, t) ≡
1
N

N∑
i=1
⟨n∗

i (q)ni(q, t)⟩ . (6.209)

We have ∂tni(q) = −iv0qu∥,i(q), with

û∥,i(q) ≡ q̂ · ûi e −iq·ri (6.210)

encoding the Fourier transform of the longitudinal self-propulsion velocity with respect
to the wavevector q. The small-q expansion of the self-intermediate scattering function
yields the mean-squared displacement

∆(t) ≡
N∑
i=1

〈
[ri(t)− ri(0)]2

〉
. (6.211)

Using the isotropy of the dynamics given by Eq. (6.198) we can also connect F and ∆:

Fs(q, t) = 1− q2

4 ∆(t) +O(q3). (6.212)

An equation for ∆ is obtained at the end of the section.

6.6.1 Short-time dynamics

To gain insights on the dynamics we consider a short-time expansion of S(q, t):

S(q, t) ≈ S(q) + t

N
⟨n∗(q)Ω−v0n(q)⟩+ t2

2N ⟨n
∗(q)Ω−v0Ω−v0n(q)⟩

= S(q)− iv0q
〈
n∗(q)û∥(q)

〉
− t2

2 v
2
0q

2
〈
û∗

∥(q)û∥(q)
〉
.

(6.213)

The second term on the right hand side of Eq. (6.213) vanishes due to rotational
invariance. For the third term we have, using Einstein notation for the components of
the vectors q̂ and ûi,

〈
û∗

∥(q)û∥(q)
〉

=
〈∑
i,j

ûi,αûj,β q̂αq̂β e −iq·(ri−rj)
〉

=
∑
i,j

⟨ûα,iûβ,j⟩
〈
δi,jδαβ q̂αq̂β e −iq·(ri−rj)

〉
= N

2 ,

(6.214)
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and therefore we obtain

S(q, t) = S(q)− v2
0q

2

4 t2 +O(t3). (6.215)

This yields two results. First, we see that increasing v0 produces a faster decay of
the dynamic structure factor at short times. Moreover, in contrast with equilibrium
overdamped Brownian dynamics, the decrease is quadratic in time (in line with the
ballistic nature of the dynamics at short times), instead of being linear. This suggests
that we should study the dynamics of S(q, t) to second order in time, as done in the
next section.

6.6.2 Projection operator formalism

We want to find an evolution equation for S(q, t). The starting point is to write its
second time derivative:

∂2
t S(q, t) = 1

N

〈
n∗(q)Ω−v0 e Ω−v0 tΩ−v0n(q)

〉
= −iv0q

N

〈
û∗

∥(q)Ω−v0 e Ω−v0 tn(q)
〉
.

(6.216)

By taking the Laplace Transform on both sides of Eq. (6.216) we get

z2S(q, z)− z = −iv0q

N

〈
û∗

∥(q)Ω−v0

1
z − Ω−v0

n(q)
〉
. (6.217)

We now have to choose a projection operator P tailored to the relevant degrees of
freedom. We assume these relevant modes to be the density field and its time derivative,
which leads to the following expression for P :

P ≡ 1
NS(q)n(q)⟩⟨n∗(q) + 2

N
û∥(q)⟩⟨û∗

∥(q). (6.218)

With this choice and a resolvent identity akin to Eq. (6.49) previously used for trans-
verse forces

1
z − Ω−v0

= 1
1−QΩ−v0Q

+
(

1 + 1
z −QΩ−v0Q

Ω−v0

)
P 1
z − Ω−v0

P
(

1 + Ω−v0

1
z −QΩ−v0Q

)
,

(6.219)

Eq. (6.217) becomes

z2S(q, z)− zS(q) = −iv0q

N

〈û∗
∥(q)Ω−v0n(q)

〉 1
NS(q) ⟨n

∗(q)R(z)n(q)⟩

+
〈
û∗

∥(q)Ω−v0û∥(q)
〉 2
N

〈
û∗

∥(q)R(z)n(q)
〉

+
〈
û∗

∥(q)Ω−v0QRQ(z)QΩ−v0û∥(q)
〉 2
N

〈
û∗

∥(q)R(z)n(q)
〉.

(6.220)

126



Mode-coupling and weak-coupling theory for transverse forces

An explicit computation gives: 〈
û∗

∥(q)Ω−v0n(q)
〉

= −iv0qN

2 ,〈
û∗

∥(q)Ω−v0û∥(q)
〉

= −N2 Dr,

−iv0q

N

〈
û∗

∥(q) 1
z − Ω−v0

n(q)
〉

= zS(q, z)− S(q).

(6.221)

Putting everything together and taking an inverse Laplace transform yields

∂2
t S(q, t) = − v2

0q
2

2S(q)S(q, t)−Dr∂tS(q, t)

−
∫ t

0
dτM(q, t− τ)∂τS(q, τ).

(6.222)

This is an evolution equation for the dynamical structure factor for the lifted-ABP
dynamics. It allows for underdamped oscillations in the presence of a memory kernel
given by

M(q, t) ≡ − 2
N

〈
û∗

∥(q)Ω−v0QeQΩ−v0 QtQΩ−v0û∥(q)
〉
. (6.223)

With a similar approach, one can derive an equation for Fs(q, t). In practice the step
above must be repeated using the single particle projection operator

Pi ≡ ni(q)⟩⟨n∗
i (q) + 2u∥,i(q)⟩⟨û∗

∥,i(q), (6.224)

instead of P and employ particle equivalence. The result is

∂2
t Fs(q, t) = −v

2
0q

2

2 Fs(q, t)−Dr∂tFs(q, t)−
∫ t

0
dτMs(q, t− τ)∂τFs(q, τ), (6.225)

with the self-memory kernel defined as

Ms(q, t) ≡ −
2
N

N∑
i=1

〈
û∗

∥,i(q)Ω−v0Q e QΩ−v0 QtQΩ−v0û∥,i(q)
〉
. (6.226)

All the steps performed so far are exact. To proceed, approximations are needed to
compute M and Ms. In the next section, we approximate the memory kernels using
the mode-coupling scheme.

6.6.3 Mode-coupling expansion

We expand the memory kernel as a product of density mode correlations. The physical
justification for this choice is that the non-trivial part in the time evolution of û∥(q)
comes from the coupling with the fluid, which involves pairwise forces between particles.
We therefore write

QΩ−v0û∥(q)
〉

= 1
2
∑

k

〈
n∗(k)n∗(q− k)QΩ−v0û∥(q)

〉
N2S(k)S(|q− k|) n(k)n(q− k)

〉
, (6.227)
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with the factor 1
2 inserted to avoid double counting of the density modes products. We

now calculate the expectation value on the right hand side of Eq. (6.227) thanks to the
convolution approximation ⟨n∗(k)n∗(q− k)n(q)⟩ ≈ NS(q)S(k)S(|q− k|):〈
n∗(k)n∗(q− k)QΩ−v0û∥(q)

〉
=
〈
n∗(k)n∗(q− k)Ω−v0û∥(q)

〉
−
〈
n∗(k)n∗(q− k)PΩ−v0û∥(q)

〉
=
〈[

Ω†
−v0 (n∗(k)n∗(q− k))

]
û∥(q)

〉
− ⟨n∗(k)n∗(q− k)n(q)⟩ 1

NS(q)
〈
n∗(q)Ω−v0û∥(q)

〉
= −iv0

〈∑
i,j,k

(ûi,αq̂α) [ûj,βkβ + ûk,β(qβ − kβ)] e ik·rj e i(q−k)·rk e −iq·ri

〉

+ i
Nv0q

2 S(k)S(|q− k|)

= i
Nv0

2

[
qS(k)S(|q− k|)− (q̂ · k)S(|q− k|)− q̂ · (q− k)S(k)

]

= i
Nv0ρ0

2 [(q̂ · k)c(k) + q̂ · (q− k)c(|q− k|)] ,
(6.228)

where the direct correlation function ρ0c(q) and the particle density of the system ρ0
were defined below Eq. (6.149) and above Eq. (6.7), respectively.

We can now give the expression for the mode-coupling memory kernel. To this end,
we resort to the approximation

e QΩ−v0 Qt ≈ e Ω−v0 t, (6.229)
and use a Gaussian factorization for computing the two-body density correlation. More-
over, due to the irreversibility of the dynamics, we have〈

n∗(k)n∗(q− k)QΩ−v0û∥(q)
〉

=
〈
û∥(q)Ω−v0Qn(k)n(q− k)

〉
. (6.230)

The memory kernel reads, in the mode-coupling approximation

M(q, t) ≈ v2
0ρ0

4

∫ dk
(2π)2 [(q̂ · k)c(k) + q̂ · (q− k)c(|q− k|)]2 S(k, t)S(q− k, t). (6.231)

A similar expression can be obtained for Ms, using as a starting point the expansion

QΩ−v0û∥,i(q)
〉

=
∑

k

〈
n∗(k)n∗

i (q− k)QΩ−v0û∥,i(q)
〉

NS(k) n(k)ni(q− k)
〉
. (6.232)

The final result reads

Ms(q, t) ≈
v2

0ρ0

2

∫ dk
(2π)2 [q̂ · kc(k)]2 F (|q− k|, t)S(k, t). (6.233)

Note that the structure of the memory kernels M and Ms is the same as the one ob-
tained for equilibrium dynamics, their magnitude being now determined by the mag-
nitude of the self-propulsion speed v0.

In the next sections we study the ergodicity breaking transition and the behavior of
the diffusion constant stemming from these approximate expressions for the memory
kernels.
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6.6.4 Long-time dynamics: speedup and ergodicity breaking

To study the long-time dynamics we introduce the normalized dynamical structure
function ϕ(q, t) ≡ S(q,t)

S(q) . Its equation of motion reads

∂2
t ϕ(q, t) = − v2

0q
2

2S(q)ϕ(q, t)−Dr∂tϕ(q, t)−
∫ t

0
dτM(q, t− τ)∂τϕ(q, τ). (6.234)

We first study the ergodicity breaking transition. We define the long-time limits of the
normalized structure factor and the memory kernel

lim
t→+∞

ϕ(q, t) = ϕ∞(q),

lim
t→+∞

M(q, t) = M∞(q).
(6.235)

In the long-time limit, Eq. (6.234) becomes a self-consistent equation for the plateau
value of the correlation function:

ϕ∞(q)
1− ϕ∞(q) = 2S(q)ρ0

q2

∫ dk
(2π)2 [(q̂ · k)c(k) + q̂ · (q− k)c(|q− k|)]2 ϕ∞(k)ϕ∞(q− k).

(6.236)
This equation is the same as the one obtained for overdamped equilibrium dynam-
ics [247]. It follows that ergodicity breaking is expected to occur at the same critical
density as in equilibrium.

To study the relaxation of the system in the ergodic regime, we introduce a relax-
ation time

τ ≡
∫ +∞

0
dtϕ(q, t). (6.237)

Integration of Eq. (6.234) in t from 0 to +∞ gives

τ = 2S(q)Dr

v2
0q

2

+ 2S(q)ρ0

q2

∫ +∞

0
dt
∫ dk

(2π)2 [(q̂ · k)c(k) + q̂ · (q− k)c(|q− k|)]2 ϕ(k, t)ϕ(q− k, t).

(6.238)
This expression for τ is formally identical to the equilibrium case with the bare diffusion
coefficientD0 now being replaced with v2

0
2Dr

= D0. WhileD0 is slaved to the temperature
in equilibrium, v2

0
2Dr

can be independently varied in the lifted-ABP model, potentially
leading to an accelerated dynamics.

6.6.5 Diffusion constant

We obtain an equation of motion for the mean-squared displacement ∆(t) by sub-
stituting Eq. (6.212) in Eq. (6.225) and retaining only the leading term in the limit
q → 0:

∂2
t ∆(t) = 2v2

0 −Dr∂t∆(t)−
∫ t

0
dτMs(q→ 0, t− τ)∂τ∆(τ). (6.239)
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We now assume a diffusive behavior at large times: ∆(t) ∼ 4Dt. Substituting into
Eq. (6.239) we obtain an expression for the diffusion constant D:

D = v2
0

2Dr

1
1 + v2

0
2Dr

m∞
s

, (6.240)

where the memory kernel is given by

m∞
s = ρ0

∫ +∞

0
dt
∫ dk

(2π)2 [q̂ · kc(k)]2 Fs(k, t)S(k, t). (6.241)

The formal expression of m∞
s is the same as in equilibrium, while the one for D is

also formally similar, with the replacement D0 by v2
0

2Dr
. In the ergodic phase when

m∞
s is finite, the diffusion constant D can be enhanced with respect to equilibrium

by increasing v2
0

2Dr
> D0, which plays the role of the driving force. Differently from

the transverse force case, the acceleration survives the high-temperature limit, since
D = 2v2

0
Dr

in this limit. In the opposite limit of temperature approaching the dynamic
transition, ms,∞ diverges and thus D exactly recovers its equilibrium expression and the
lifted-ABP dynamics is no longer felt. This suggests that lifted dynamics acceleration
plummets as the kinetic glass transition is approached.

6.7 Outlook

This Chapter concludes our investigations on transverse forces. Using analytical ap-
proximations schemes for the microscopic dynamics of finite dimensional liquids, we
rationalized the picture brought forth by the numerical analysis of Chapter 4. Our
approach goes of course much beyond this task, as allowed us to study several individ-
ual and collective transport coefficient, from the diffusivity and mobility tensors to the
viscosity. This Chapter opens at least two immediate research directions. The first one
has to do with the collective behavior of dense assemblies of chiral active particles [175,
77], for which a mode-coupling analysis will surely closely follow the footsteps devel-
oped in our work. The second one is more subtle: it is concerned with the numerical
integration of the derived mode-coupling equations. This will surely be a highly non-
trivial task due to the loss of isotropy and the appearance of multiple time integrals in
the equation of motion. However, we hope to proceed further in this direction, taking
also advantage from recently developed numerical software that handle the integration
of general mode-coupling equations [221].

The mode-coupling theory developed for lifted-ABPs in Section 6.6 suggests that
also lifting schemes might share a fate similar to the one of transverse forces in the
glassy phase of dense liquids, at least when the driving is supplemented at the level of
the translational degrees of freedom. Our investigation for transverse forces leaves us
thus with two questions: does the fate of more sophisticated lifting schemes echo the
one of transverse forces? And, if this is true for translational degrees of freedom, are
there other degrees of freedom in glassy system that can be targeted by nonequilibrium
currents, and thus speedup the dynamics in a more effective way? The next Chapter
aims at addressing these questions.
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Contributions from Chapter 6

• We build a specific weak-coupling approximation for the dynamics of a
tracer with transverse forces.

• In the weak coupling approximation, we witness the emergence of odd
mobility and diffusivity, and an enhancement of longitudinal diffusivity.
Both the odd transport properties and the longitudinal diffusion grow as
the temperature is reduced.

• We construct a mode-coupling theory tailored for transverse forces.

• We find that a dynamical ergodicity breaking transition happens, in the
presence of transverse forces, at the same values of temperature TMCT (or
density) for equilibrium dynamics.

• In the ergodic phase, we witness a speedup of transverse forces on equi-
librium dynamics, both in the form of a reduced relaxation time for the
decay of density-density correlations and an enhancement of longitudinal
diffusion.

• From the dynamics of collective and individual density-density autocorre-
lators, we obtain expressions for collective and individual transport coeffi-
cient: mobility and diffusivity tensors, and viscosity tensors.

• The longitudinal diffusivity vanishes at the glass transition. From this fact,
we infer a decrease in the efficiency of transverse forces upon lowering the
temperature, in the vicinity of TMCT

• The odd diffusivity saturates to a constant as the mode-coupling temper-
ature is approached.

• All the entries of the mobility tensor vanish at the glass transition.

• Both the shear and the odd viscosity diverge at the glass transition.

• We put forward a mode-coupling theory for a lifted dynamics inspired by
active Brownian particle.

• For this lifted dynamics, we find that the ergodicity breaking scenario is
left unaltered by the nonequilibrium drive, as for transverse forces.

• In the ergodic phase, the lifted dynamics is faster than its equilibrium
counterpart, similarly for what occurs with transverse forces.
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Irreversible Monte Carlo algorithms
in glass formers: Event-chain and
collective Swap
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In the previous chapters, we have studied the overdamped Langevin dynamics with
transverse forces in dense liquids. This dynamics was meant to be a minimal, paradig-
matic model to study the speedup obtained in glassy systems by translational degrees
of freedom driven out of equilibrium, while preserving the Boltzmann distribution in
the steady state. In this Chapter, we study the celebrated Event Chain Monte Carlo
(ECMC) algorithm, a nonequilibrium Monte Carlo scheme that exploits the idea of
lifting to perform driven, collective translations of chains of particles, in a model of
polydisperse hard disks. Very much like what was witnessed for transverse forces, the
efficiency of ECMC compared to the standard, Metropolis algorithm decreases upon

133



Chapter 7

increasing the glassiness of the system. However, the driven and collective moves char-
acteristic of ECMC need not be confined only to particle translations, as in principle,
other degrees of freedom can experience a nonequilibrium drive. For glassy systems,
an equilibrium Monte Carlo scheme called Swap is known to achieve astronomical
speedups by allowing for the exchanges of particle radii. We propose an algorithm that
performs driven, collective swaps in continuously polydisperse systems of hard disks,
bringing the event-chain ideas to the space of particle diameters. As the glassiness of
the system increases, the efficiency of our algorithm with respect to Swap increases too.
By combining our novel algorithm with ECMC for particle translations, we achieve a
speedup of ≈ 40 with respect to the state-of-the art Swap. As an application, we show
that our algorithm can be used to produce very dense jammed packings of disks.
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We depart from the paradigmatic overdamped Langevin dynamics to address the
efficiency of irreversible Monte Carlo schemes. As a matter of fact, Monte Carlo al-
gorithms, together with Molecular dynamics simulations, are the way-to-go numerical
schemes when confronted with sampling a given target distribution. For example, for
the Kob-Andersen model addressed in Chapter 4, equilibrium Monte Carlo schemes are
an order of magnitude faster than the corresponding equilibrium overdamped Langevin
dynamics [35].

Recently, an efficient Monte Carlo algorithm was developed for size polydisperse
fluids, where local Monte Carlo moves are performed in an enlarged configuration
space composed of particle positions and diameters [119, 33, 203]. The sequential swap
of particle pairs respects detailed balance and ensures that the particle size distribu-
tion is conserved [119]. The resulting swap Monte Carlo algorithm (hereafter called
‘Swap’) allows equilibration at very low temperatures, exploiting dynamic pathways
unavailable to the local dynamics [203]. Swap paved the way for numerous physical
studies [30, 210, 235] and computational developments [31, 218]. Diameter dynamics
can be implemented in molecular dynamics, both in thermal equilibrium [34] or in gra-
dient descent [150, 51]. For hard particles, this optimization strategy was exploited to
produce jammed packings with large stability and novel physical properties [51, 122,
44].

The Swap algorithm samples the Boltzmann distribution owing to reversible evo-
lution rules obeying detailed balance. We saw however in Chapter 1 that giving up
detailed-balance–while preserving the target distribution–can be rewarded with sam-
pling acceleration. Ironically, the seminal 1953 article [188] by Metropolis et al. pre-
sented an algorithm to sample the Boltzmann distribution for simple fluids whose
elementary moves did not, strictly speaking, satisfy detailed balance, since the labels
of the moving particles were updated according to a fixed order.

A successful implementation of these idea on irreversibility for particle models is
the event-chain Monte Carlo (ECMC) algorithm [23]. Following the lifting prescription
introduced in Chapter 1, ECMC operates in an enlarged configuration space where
irreversible, collective particle translations are performed. For hard disks near their
hexatic ordering transition, ECMC offers a two orders of magnitude speedup that led
to a better understanding of the phase diagram [22]. This approach was extended in
various directions [193, 194, 140, 147, 139, 192, 121, 41], but a quantitative benchmark
in dense disordered states is lacking.

Furthermore, in principle, the collective, driven moves that form the backbone of
ECMC need not to be confined to the space of particle translations. In polydisperse
particle models, another obvious degree of freedom that could be affected by these
moves is the diameter of the particles. Here we propose, implement and benchmark
irreversible Monte Carlo algorithms where collective and directed particle translations
and diameter swaps are performed while maintaining global balance.

We carefully test the respective and combined effects of these moves in a continu-
ously polydisperse models of hard disks displaying glassy dynamics in equilibrium, and
that can be compressed towards jamming [44]. We find that the directed translational
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Figure 7.1: Particle size distribution π(σ) for the system investigated in this work.

moves used in ECMC marginally affect the dynamics, with a speedup that plummets
with increasing density, echoing the fate of transverse forces unravelled by our analysis
in Chapters 4 - 6. By contrast, irreversible collective swaps (named ‘cSwap’) produce
an opposite trend offering a comfortable gain over Swap that improves as density in-
creases. Combining both types of moves in a novel algorithm (named ‘cSwapECMC’)
provides an overall computational speedup reaching about 40 over the conventional
Swap. In addition, cSwapECMC remains extremely efficient during nonequilibrium
compressions, producing jammed packings comparable to gradient descent protocols
preserving the particle size distribution.

7.1 The model

We consider a two-dimensional additive mixture of N = 1024 hard disks in a periodic
square box of linear size L. Lengths are measured in units of the average diameter σ
with a fixed continuous polydispersity

√
σ2−σ2

σ
of about 25%. The histogram of particles

diameters π(σ) is shown in Fig 7.1. The hard-disk interaction potential V (rij, σi, σj)
between two particles, labeled i and j, with diameters σi, σj is

V (rij, σi, σj) ≡
+∞ if rij ≤ σi+σj

2
0 otherwise

, (7.1)

and the total interaction energy is H(rN , σN) ≡ ∑i<j V (rij, σi, σj), where we have used
the notation rN ≡ {ri, . . . , rN} and σN ≡ {σ1, . . . , σN} to indicate a given configuration
of particle positions and diameters. The probability distribution we are interested in
sampling for this system is the Boltzmann distribution πB(rN , σN) ∝ e −βV (rN ,σN ). Due
to the hard-sphere interaction potential, we have

πB(rN , σN) ≡
0 If some pair of particles overlaps

1
Z

Otherwise
(7.2)
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where Z ≡ 1
N !
∑
σN

∫
drN e −βH(rN ,σN ) is the partition function of the system, computed

over all the possible assignments of particles positions and diameters. Note that, as
observed in [213], since a diameter permutation is equivalent to a permutation of the
position of the particles, we have that Z =

∫
drN e −βH(rN ,σN ) for a fixed permutation

of the diameters σN .

We control the glassiness of the system by varying the packing fraction is ϕ ≡
Nπσ2/(4L2). We work in a density regime characterized by glassy dynamics, typically
much beyond the one explored in [23] for monodisperse systems.

We now proceed to describing the different Monte Carlo dynamics, all tailored to
sample πB, studied in this Chapter.

7.2 Monte Carlo schemes

In this Section, we illustrate the different algorithms investigated in this chapter. First,
we recall the condition that each algorithm must obey to admit the Boltzmann distri-
bution in its steady state. We denote by C denotes a state of the system, and πt(C) the
probability of the system to be in configuration C at time t. This distribution evolves
in discrete time according to the master equation

πt+1(C) =
∑
C′
P (C ′ → C)πt(C ′) (7.3)

with P (C ′ → C) the transition probability from state C ′ to state C. We look for
stationary solution πss(C) of Eq. (7.3). Since by definition, ∑′

C P (C → C ′) = 1 for every
C, we obtain ∑

C′
P (C → C ′)πss(C) =

∑
C′
P (C ′ → C)πss(C ′). (7.4)

This stationary condition is known in the mathematics Markov chain literature as
global balance [166]. It can be satisfied by imposing the detailed balance condition

P (C → C ′)πss(C) = P (C ′ → C)πss(C ′), (7.5)

which is a statement of reversibility of the underlying Markov Chain, equivalent to
what was given in Sec. 1.1.1 for overdamped Langevin dynamics.

To compare the efficiency of various algorithms, we need to carefully define a specific
unit of time, tmove, adapted for each case. The unit of time tmove is constructed upon
the elementary transitions involved in each algorithm. Incidentally, over the time tmove
in each algorithm, one overlap detection involving a calculation of neighbor particles
distances is needed. From the point of view of CPU time, this is the most costly
operation to be performed for each algorithm. Therefore, the unit tmove accurately
describes also CPU times, as shown later in this Chapter.
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Figure 7.2: Illustration of the Swap Monte Carlo algorithm. During a time tmove, a
swap of the diameters of the highlighted particles is attempted. Adapted from [203].

7.2.1 Metropolis Monte-Carlo (MMC)

In Metropolis Monte Carlo (MMC) dynamics [166], a random particle is selected uni-
formly, and a random displacement is uniformly drawn from a square of length δ
centered around the origin. We take δ = 0.115σ [33]. The displacement is accepted if
it creates no overlaps. One such attempt defines tmove.

7.2.2 Swap Monte Carlo

In Swap, we randomly alternate translational moves (as in MMC) with particle swaps
with probability pswap = 0.2 [203], see Fig. 7.2. During tmove, two particles are randomly
selected and their radii are exchanged if the swap does not create overlaps. Both the
Metropolis and Swap algorithm satisfy the detailed balance condition, which implies
that they admit the Boltzmann distribution πB in their steady state. We now address
the irreversible Event Chain algorithm.

7.2.3 Event chain Monte Carlo (ECMC)

We recall the the so-called ‘straight’ Event Chain Monte Carlo, as described in [23,
21].

The phase space is lifted by two additional degrees of freedom, an activity label i
denoting the driven particle and its direction of self propulsion v, a two-dimensional
vector of unit norm. The state of the system is thus described by a configuration
C = {rN , σN , i, v}. During a time interval tmove, particle i travels along direction v
until it collides with one of its neighbors, j. The distance δℓij traveled by i during a
move is thus determined by the equation

δℓij = rji · v−
√
σ2
ij − (rji · v⊥)2, (7.6)
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Figure 7.3: Event-chain Monte Carlo algorithm: the lifted set of degrees of freedom,
the active label j and the speed direction v (magenta), produce a directed translational
motion of a chain of three particles.

where rji = rj−ri is the vector joining particle i to particle j, σij ≡ σi+σj

2 is the effective
diameter, and v⊥ = (vy,−vx) is the direction orthogonal to v. In practice, in the
simulations the inter-particle distance rij is computed according to the minimum image
convention [96] to take periodic boundary conditions into account, and the particle j
is identified through an event-driven scheme, by minimizing δℓik among all possible
target particles k, i.e. j = arg mink δℓik.

After an event occurs, a lifting move is performed: the activity label changes from
i to j. In the next ECMC move particle j will perform directed motion along the
direction v. The composition of several ECMC moves builds up a chain of particles
performing directed motion, see Fig 7.3. When the displacement performed by the
active particles add up to a fixed parameter ℓ, which fixes the length of the chain, the
activity label and the self propulsion direction are resampled uniformly in their domain
of definition, which are respectively the set {1, 2, . . . , N} for the activity label and the
set {ex, ey} for the self-propulsion, for the case of straight ECMC.

We now give a proof, following the original paper [23], that ECMC admits the
Boltzmann distribution in the steady state, once the lifted degrees of freedom are
integrated out. We use the following ansatz for the steady state distribution

πss(C) = 1
2N πB(rN , σN), (7.7)

which means that the lifted degrees of freedom are uniformly distributed in the steady
state among the N particle labels and the 2 possible self-propulsion direction, while
the positions of the particles and the diameters follow the Boltzmann weight. We need
to verify the stationary condition∑

C′
πss(C ′)P (C ′ → C) = πss(C) (7.8)

with P (C ′ → C) the probability of transitioning from configuration C ′ = {r′N , σ
′N , i′, v′}

to configuration C = {rN , σN , i, v} by displacing a directed chain of particles of length
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ℓ. This probability is

P (C ′ → C) = 1
2N

N∑
j=1

δσ′N ,σN δr′N ,r∗N (j,v′) (7.9)

the factor 1
2N corresponds to a uniform resampling of the active degrees of freedom,

while r∗N(j, v′|i′) is the configuration obtained from rN , by displacing a collective chain
of length ℓ that starts from the particle with label j along the direction −v′ –note
the sign inversion– and terminates at particle i′. This configuration can be uniquely
determined upon neglecting the occurrence of simultaneous collisions between three
or more disk along a chain. The latter approximation can be rigorously justified by
treating the ECMC algorithm as a process continuous in time [198].

Substituting Eq. (7.9) in the stationary condition Eq. (7.8) and using the ansatz
for πss given by Eq. (7.7) we obtain that the condition to be verified is

1
2N

N∑
i′=1

∑
v′=ex,ey

πB(r∗N , σN) = πB(rN , σN), (7.10)

which is true, since disks with hard interactions πB(r∗N , σN) = πB(rN , σN). This con-
cludes our demonstration that ECMC samples the Boltzmann distribution for hard
disks.

One can of course design an algorithm where collective translations with ECMC
alternate with Swap moves with probability ps. This produces a new algorithm, here
called SwapECMC. We now proceed to bring direct the motion in the space of particle
diameters.

7.2.4 Collective Swap (cSwap)

We now show how to perform directed, irreversible, collective moves in diameter space
to arrive at cSwap, see Fig. 7.4. We define a one-dimensional array containing the
particle labels by order of increasing diameters and the operators (L,R) acting on
the labels: L(i) returns the label of the particle immediately to the left of i (with
a smaller radius); R(i) returns the label of the particle to the right (with a larger
radius). During tmove we perform the following operations. A particle i is uniformly
selected to become active and the state of the system is described by C = {rN , σN , i}.
We then determine the largest diameter σj ∈ σN that particle i can adopt without
generating an overlap. To preserve the particle size distribution, we now perform a
cascade of swaps: σi ← σj (maximal authorized expansion of i), followed by a series
of incremental deflations σj ← σL(j), σL(j) ← σL2(j), . . ., σLn(j) ← σi, with n such that
Ln(j) = R(i), thus completing the cascade. Finally, a lifting event occurs leading to
C ′ = {rN , σ′N ,L(i)}, where σ′N is reached after the collective swap. If i is the particle
with the smallest diameter, L(i) is the particle with the largest diameter. To warrant
ergodicity, we perform with probability 1/N a uniform resampling of the lifting label.
Finally, ECMC can be combined with cSwap, leading to a fully irreversible algorithm,
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Figure 7.4: Collective Swap algorithm: the active particle (in magenta) inflates while
other particles deflate, resulting in a directed motion in diameter space (as seen at the
bottom) and a collective swap of five particles.

‘cSwapECMC’. The invention and implementation of irreversible and collective swap
moves is our main algorithmic development. While cSwap is broadly applicable for any
particle size distribution, its efficiency should be optimal for continuous distributions,
or discrete ones with a large number of diameter families. For bidisperse models, cSwap
remains rejection-free and irreversible, but loses its collective character.

We must prove that the stationary state of the cSwap dynamics is the Boltzmann
distribution, i.e. πss

(
{rN , σN , i}

)
= 1

N
πB(rN , σN), where πB is the Boltzmann distribu-

tion for a system of polydisperse hard disks, where now the set of positions rN is held
fixed, and the factor 1

N
is the uniform distribution for lifting. Denoting by p(C → C ′)

the transition probability from C = {rN , σN , i} to C ′ = {rN , σ′N , i′}, we must prove
that the stationarity condition∑

C′
πss(C ′)p(C ′ → C) = πss(C) (7.11)

is satisfied by πss = πB/N . The left-hand side is decomposed into label resampling
and collective swaps:

p(C ′ → C) = 1
N2 δσ′N ,σ +

(
1− 1

N

)
δC′,C∗ , (7.12)

where C∗ is the configuration leading to C after a cSwap move (we show below that C∗

exists and is unique). Substituting (7.12) into (7.11), using the definition of πss and∑
C = ∑

j

∑
σN , we get

1
N
πB

(
rN , σN

)
+
(

1− 1
N

)
πB

(
rN , σ∗N

)
= πB

(
rN , σN

)
.

Since for hard disks, πB is uniform over allowed configurations, stationarity is proven.
Finally we construct the configuration C∗ =

{
rN , σ∗N , i∗

}
that will reach C =

{
rN , σN , i

}
.

We first transform σR(i) ← σR2(i) if the change does not generate any overlap. We then
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Figure 7.5: Numerical test of ergodicity for the cSwap and ECMC algorithms. (a)
Equation of state Z(ϕ) for the polydisperse hard disks system. (b) Rescaled radial
distribution function g(r/σ−1) as a function of the distance from its first peak r/σ−1.
(c) Probability distribution function of the packing fractions π(ϕ) explored by the
system during NPT simulations at βP = 16.3σ2.

repeat this operation forR2(i), R3(i), etc. After n iterations, either the transformation
σRn(i) ← σRn+1(i) is no longer allowed, or the largest particle is reached. When n is
reached, we set i∗ = Rn(i) and transform σRn(i) ← σR(i). The resulting configuration
defines σ∗N , as directly verified by performing a cSwap move on C∗.

7.3 Tests of ergodicity

The above reasoning establishes the stationarity of the Boltzmann distribution. The
general proof of ergodicity of the algorithm, as obtained for ECMC [198], is left for
future work. Here we provide a set of numerical and analytical tests to support our
claim of ergodicity.

7.3.1 Numerical test

We present numerical tests supporting the ergodicity of the cSwap and ECMC algo-
rithms. The first test is the numerical calculation of the equation of state Z(ϕ) of the
polydisperse system considered in the main text. The equation of state relates the re-
duced pressure Z = βP

ρ
to the packing fraction ϕ. Here P is the pressure applied to the

system, ρ is the number density and β−1 = kBT . It can be obtained from simulations in
the NPT ensemble, where one has access to the running averages of Z and ϕ at fixed
applied pressure P . The results are shown in Fig. 7.5(a), where they are compared
with an extension to polydisperse systems of the empirical Henderson formula [129,
234] which reads

ZeH =
1−

(
1− σ2

σ2

)
ϕ+ (b− 3)σ2

σ2ϕ
2

(1− ϕ)2 ,

b ≡ 16
3 −

4
√

3
π

.

(7.13)

142



Irreversible Monte Carlo algorithms in glass formers: Event-chain
and collective Swap

The agreement with the empirical formula and with the conventional Metropolis and
Swap algorithms is excellent, and this serves as a guide to detect deviations from one
algorithm to another. We find that all algorithms agree with each other.

We next compare the rescaled radial distribution function g(r/σ) in the NPT en-
semble in Fig. 7.5(b). Its expression is given by

g(x) ≡
∑
i,j
i<j

Cij

∫ xb+∆x

xb

δ

(
x′ − rij

σij

)
dx′

Cij ≡
1

2π(xb + ∆x/2)∆xσ2
ijρ(N − 1)

(7.14)

where σij ≡ 1
2 (σi + σj), ρ = N/L2 is the number density of the system, and we collect

the rescaled interparticle distances in a histogram with bin width ∆x. xb = b∆x is the
coordinate of the b-th bin, with b chosen so that xb ≤ x < xb + ∆x. Again, the curves
obtained with the different algorithms superimpose on each other.

Finally, we report in Fig. 7.5(c) the histogram of the packing fractions explored
during an NPT simulation, π(ϕ), for a fixed pressure P . Again all algorithms explore
the same fluctuations, including in the tails of the distribution, showing that the same
Boltzmann distribution is indeed properly sampled in all our algorithms.

7.3.2 Analytical test

Here we prove the ergodicity of the cSwap dynamics in the case of a small polydisperse
system at low densities. The discrete-time dynamics we consider is made up only by
cSwap moves, the positions of the disks rN being fixed at all times. The state of the
system C = {σN , i} is specified by assigning a diameter to each of the N particles
–the resulting permutation of diameters is denoted by σN– and by the lifting degree
of freedom i, i.e. the label of the active particle. The system can access a subset of
N ! × N configurations. The configurations in the subset satisfy the non-overlapping
hard disks condition. The probability πt(C) for the system to be in state C at time t
obeys the discrete time Markov dynamics

πt+1(C) =
∑
C′
P (C ′ → C)πt(C ′), (7.15)

with P the transition matrix encoding the probability to jump from one configuration
to another during a discrete time-step. The convergence properties of the dynamics are
encoded in the spectrum of P . Proving that the cSwap dynamics is ergodic amounts to
showing that the spectrum of P has a unique, nondegenerate, eigenvalue λ = 1 lying
on the unit circle, and that all the other eigenvalues have a norm strictly smaller than
1 [202].

We consider the case where N = 4 and the particles are far away from each other,
so that no overlap between them can be generated upon permutation of the radii.
To write down the transition matrix describing the cSwap dynamics, we decompose
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the configuration space into a tensor product S4 ⊗ i, where S4 is an element of the
permutation group of 4 elements, and i is the lifting degree of freedom labeling the
active, expanding particle. The permutations are labeled by natural numbers in the
following way:

1 ≡ {1, 2, 3, 4} 2 ≡ {2, 3, 4, 1} 3 ≡ {3, 4, 1, 2} 4 ≡ {4, 1, 2, 3}
5 ≡ {1, 3, 4, 2} 6 ≡ {3, 4, 2, 1} 7 ≡ {4, 2, 1, 3} 8 ≡ {2, 1, 3, 4}
9 ≡ {1, 2, 4, 3} 10 ≡ {2, 4, 3, 1} 11 ≡ {4, 3, 1, 2} 12 ≡ {3, 1, 2, 4}
13 ≡ {2, 4, 1, 3} 14 ≡ {4, 1, 3, 2} 15 ≡ {1, 3, 2, 4} 16 ≡ {3, 2, 4, 1}
17 ≡ {2, 3, 1, 4} 18 ≡ {3, 1, 4, 2} 19 ≡ {1, 4, 2, 3} 20 ≡ {4, 2, 3, 1}
21 ≡ {2, 1, 4, 3} 22 ≡ {1, 4, 3, 2} 23 ≡ {4, 3, 2, 1} 24 ≡ {3, 2, 1, 4}

(7.16)

Here the numbers inside the brackets denote the index of the particles, ordered accord-
ing to their diameters, from the smallest to the largest. For example, {2, 3, 4, 1} is the
configurations where particle with label 1 has the largest diameter, particle with label
4 has the second largest diameter, and so on. If the system is in a configuration where
particle 3 is the active one, we would have C = {2, 3, 4, 1} ⊗ 3.

With this notation, the transition matrix can be written as a 24× 24 block matrix,
each block being made by a 4 × 4 sub-block. Transitions between blocks represent
changes in the diameter assignments for the different particles, while transitions within
a block represent change in the active degree of freedom. The transition matrix P
describing the cSwap dynamics is

D4 B1 · · B2 · · · B3 · · · · · · · · · · · · · · ·
· D4 B1 · · · · · · · · · B2 · · · B3 · · · · · · ·
· · D4 B1 · B3 · · · · · B2 · · · · · · · · · · · ·

B1 · · D4 · · · · · · · · · B3 · · · · · B2 · · · ·
· · · · D4 B1 · · · · · · · · B3 · · · B2 · · · · ·
· · B3 · · D4 B1 · · · · · · · · · · · · · · · · B2
· · · · · · D4 B1 · · · · · B2 · · · · · B3 · · · ·
· B2 · · B1 · · D4 · · · · · · · · · · · · B3 · · ·

B3 · · · · · · · D4 B1 · · · · · · · · · · · B2 · ·
· · · · · · · · · D4 B1 · B3 · · · B2 · · · · · · ·
· · · B2 · · · · · · D4 B1 · · · · · · · · · · B3 ·
· · · · · · · · B1 · · D4 · · · B2 · B3 · · · · · ·
· · · · · · · B2 · B3 · · D4 B1 · · · · · · · · · ·
· · · B3 · · · · · · · · · D4 B1 · · · · · · · B2 ·
· · · · B3 · · · B2 · · · · · D4 B1 · · · · · · · ·
· · B2 · · · · · · · · · B1 · · D4 · · · · · · · B3
· B3 · · · · · · · · · · · · · · D4 B1 · · B2 · · ·
· · · · · B2 · · · · · B3 · · · · · D4 B1 · · · · ·

B2 · · · · · · · · · · · · · · · · · D4 B1 · B3 · ·
· · · · · · B3 · · · B2 · · · · · B1 · · D4 · · · ·
· · · · · · · B3 · B2 · · · · · · · · · · D4 B1 · ·
· · · · · · · · · · · · · · B2 · · · B3 · · D4 B1 ·
· · · · · · B2 · · · B3 · · · · · · · · · · · D4 B1
· · · · · · · · · · · · · · · B3 · B2 · · B1 · · D4



.

(7.17)

The dot symbol · denote 4 × 4 matrices whose entries are all zeros. The diagonal
block is a sum of two terms, D4 ≡ A4 + B4. The block of type A4 encodes transitions
involving only the active degree of freedom,

A4 ≡


α α α α

α α α α

α α α α

α α α α

 , (7.18)

with α = 1/42 = 1/16. They are associated to random resampling of the activity label,
and they are used here to ensure that P is ergodic. The blocks Bi encode transitions
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generated by the cSwap moves, involving an inflation of the active particle and the
cascade of swaps. They are given by:

B1 ≡


◦ ◦ ◦ 1− 1

4
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

 B2 ≡


◦ ◦ ◦ ◦

1− 1
4 ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦



B3 ≡


◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ 1− 1

4 ◦ ◦
◦ ◦ ◦ ◦

 B4 ≡


◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ 1− 1

4 ◦

 ,
(7.19)

with the symbol ‘◦’ denoting the entries with value 0.

The matrix P is doubly stochastic, i.e. the sum of all the elements belonging to
a fixed row, or fixed column, is one. A stationary solution of the stochastic process
associated with P is given by

πss ≡
1

4× 4!

24⊕
i=1

[1, 1, 1, 1]T , (7.20)

which is the tensor product of the Boltzmann distribution for hard disks times a uniform
distribution of the active degree of freedom among the 4 particles. To show ergodicity,
we inspect the spectrum of P . Its eigenvalues λ are shown in the complex plane in
Fig. 7.6. The only eigenvalue lying on the unit circle is λ = 1, thus proving the
ergodicity of the cSwap Markov chain. We observe that the other eigenvalues tend to
accumulate at the vertices of an octagon inside the unit circle. This is a consequence
of the introduction of a refreshment probability for the label of the active particle.
Without such a refreshment dynamics, the Markov chain would be periodic, and there
would be 2N eigenvalues lying on the unit circle. The introduction of a refreshment
rate pushes the eigenvalues inside the unit circle, making the Markov Chain aperiodic.

7.4 Relaxation times

We run simulations in the NVT ensemble [96] comparing MMC, ECMC, Swap, SwapECMC,
cSwap and cSwapECMC for increasing packing fractions. After careful equilibration,
we measure a representative time correlation function for 2d glass-formers, namely the
time autocorrelation of the global hexatic order Cψ(t) [89]. It is defined as

Cψ ≡
⟨ψ∗(t)ψ(0)⟩
⟨|ψ(0)|2⟩ , (7.21)
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Figure 7.6: Representation in the complex plane of the eigenvalues λ of the transition
matrix P given by Eq. (7.17) for the cSwap dynamics in the case of a system of N = 4
particles. The dotted line is the unit circle.

where ψ(t) is the global hexatic order parameter. It is a sum of local terms ψ(t) ≡
1
N

∑N
i=1 ϕ6,i(t) where the local hexatic order parameter for particle i, ϕ6,i(t) is

ϕ6,i(t) ≡
1
ni

ni∑
j=1

e6iθij , (7.22)

with the sum running over the ni neighbors of particle i, defined through a Voronoi
tessellation, constructed using the freud library [226], and θij is the angle between the
vector rij ≡ ri − rj and the vector ex.

From the time decay of Cψ we define the relaxation time τα, such that Cψ(τα) = e−1.
For each algorithm, we collect the evolution of the correlation time τα(ϕ) measured in
units of Ntmove in Fig. 7.7(a). The most costly part of Monte Carlo moves is the
overlap detection involving a sum over neighbors. Since one such sum is needed over
the time tmove in each algorithm, the comparison in Fig. 7.7(b) accurately describes
CPU times. Each algorithm displays hallmarks of glassy dynamics, and we follow
for about 5 decades the slowing down. The algorithms are split into two families,
depending on the presence of swap moves. In appendix I, we show that these results
are robusts upon changing the form of the continuously polydisperse distribution, and
upon changing the size of the system.

We now address the speedup provided by nonequilibrium moves in the two families
of algorithm.
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Figure 7.7: (a) Equilibrium relaxation time of six different Monte Carlo algorithms as a
function of packing fraction. MMC and the faster ECMC fall out of equilibrium much
before the four swap algorithms. The large speedup offered by Swap can be further
improved using irreversible MC moves, cSwapECMC providing a further speedup of
about 40 near ϕ = 0.88. (b) Equilibrium relaxation times of the six algorithms inves-
tigated in the main text, in units of CPU time. Here tCPU = 1 second.

7.4.1 Echoes from transverse forces

MMC and ECMC only contain translations and equilibration becomes difficult above
ϕ ≈ 0.79. Yet, ECMC clearly outperforms MMC throughout the entire density range,
but the edge of ECMC over MMC is lost as ϕ increases. This is demonstrated in
Fig. 7.8(a), which shows that the ratio of their relaxation times decreases from ≈
22 in the fluid, down to ≈ 10 near ϕ = 0.79. This suggests that the irreversibility
introduced by the directed chain moves does not help the system to discover new, faster
pathways across configuration space. This interpretation is confirmed by the snapshots
in Figs. 7.8(b, c) showing particle displacements with respect to the system’s center of
mass from the same initial condition, using either MMC or ECMC. Despite the very
different particle moves in both dynamics, the long time relaxation proceeds along a
similar path. This trend in the efficiency and the robustness of the long time relaxation
trajectory against the nonequilibrium drive are very much reminiscent of what we saw
in the minimal model of transverse forces.

7.4.2 Faster than the fastest

By contrast, the four algorithms employing particle swaps sample the Boltzmann distri-
bution much faster than MMC and ECMC and only become inefficient near ϕ ≈ 0.88,
see Fig. 7.7. All algorithms thus display a dramatic speed up compared to MMC and
ECMC. Using Swap as a reference, we again observe that the introduction of transla-
tional chains in SwapECMC provides a modest acceleration over conventional Swap of
about 5 at ϕ = 0.77, decreasing to about 2 at the largest density (see Fig. 7.9). There-
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fore, coupling Swap to ECMC is not very helpful. The situation is more favorable when
collective swap moves are introduced, as the speedup offered by the irreversibility in
cSwap now grows with density, as demonstrated in Fig. 7.9, to reach a factor about 10
near ϕ = 0.88 over Swap. These results suggest that it is useful to combine cSwap and
ECMC into cSwapECMC, where both translational and diameter moves are now collec-
tive and irreversible. Getting the best of both types of moves, cSwapECMC now offers
a comfortable speed up over Swap that increases from 10 to about 40 at the largest
packing fraction studied, clearly outperforming the swap Monte Carlo algorithm.

7.5 Dense jammed packings

An interesting avenue for our algorithms is the production of jammed disk packings,
which are typically produced using specific nonequilibrium compression protocols [178,
206]. Using conventional MMC for compressions, the jamming packing fraction ϕJ
can be reached using NPT Monte Carlo [96]. The simplest protocol starts from an
equilibrium hard disk configuration at ϕinit, before suddenly turning the pressure to
infinity [40]. At long times, the packing fraction saturates to a value ϕJ , which is
an increasing function of ϕinit [62]. This is confirmed in Fig. 7.10, where the range
ϕJ ∼ 0.855 − 0.895 is covered. Very similar results are obtained using ECMC dur-
ing compressions, see Fig. 7.10. Note that the preparation of equilibrium configura-
tions for ϕinit > 0.79 requires particles swaps [211], which are no longer used during
compressions. Interestingly, introducing swaps during compressions from the same
range of initial conditions leads to jamming densities that are considerably larger,
ϕJ ≈ 0.904 − 0.906 (Fig. 7.10). At the time of writing, such large packing fractions
have only been obtained using gradient descent algorithms simultaneously optimizing
diameters and positions to more efficiently pack the particles, followed by geometric
triangulation methods [44]. That similar performances can be reached using cSwap
suggests that these nonequilibrium algorithms in fact explore pathways similar to the
ones allowed by swap moves. In addition, the very weak dependence of ϕJ on ϕinit ra-
tionalizes the surprising efficiency of augmented gradient-descent algorithms. A major
advantage of cSwap is that the particle size distribution is strictly conserved, rather
than annealed, during the compression.

7.6 Outlook

Using swap and event-chain Monte Carlo as stepping stones, we demonstrate that
simple Monte Carlo algorithms with increasing efficiency can be devised, that provide
a set of improved computational tools to more efficiently equilibrate deep glassy states.
We address here some directions of further research.

On the analytical side, it would desirable to understand how cSwap operates, mim-
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The light blue band covers the range of densities obtained using augmented gradient-
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icking, in spirit, the analysis done for transverse forces in this thesis. For instance, we
would like to work out a theory of the cSwap dynamics in the high dimensional limit
introduced in Chapter 5. When proceeding in this direction, however, there are several
issue that demand to be addressed. The first one is to develop a dynamical mean field
theory for bidisperse, and polydisperse liquids, even in the absence of Swap dynamics.
As a matter of fact, while the analysis of the static for these system was done in [137,
1], the analysis of its dynamics is lacking. This analysis is developed in App. G. The
second, perhaps more critical, issue is that is not clear whether the swap dynamics
survives in limit of large space dimensions, even though approximate theories suggest
so on thermodynamics grounds [138]. This issue is addressed in Appendix H.

For what concerns finite-dimensional, practical implementations, we have just scratched
the surface: in order to become new standards, the cSwap algorithm and its deriva-
tives proposed here need to be pushed in several directions. A first encouraging result
is the successful scaling of their performances with system size, shown in App. I, in
line with results for ECMC and Swap. A less obvious direction is the application to
three dimensions, which is the subject of on-going efforts, again with encouraging pre-
liminary results. A third direction concerns the application to glass-former with soft
potentials. Swap performances do not decrease with continuous potentials [203], and
some extensions of ECMC to continuous potentials were successful [193, 204]. Future
work should develop extensions of cSwap for glass-formers with continuous potentials
to extend the range of applicability of irreversible Monte Carlo methods in the field of
supercooled liquids. All these perspectives directly follow from our work; they should
help the development of efficient, versatile and simple to implement sampling methods
for disordered systems with a complex free energy landscape.
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Contributions of Chapter 7

• We assess the efficiency of the celebrated Event-Chain Monte Carlo
(ECMC) algorithm in a polydisperse mixture of hard disks at high density.

• As the density increases we find that ECMC maintains an edge over the
equilibrium Metropolis Monte Carlo algorithm, but the efficiency decreases
as the dynamics of the system becomes more glassy.

• We design a novel algorithm, collective Swap (cSwap), that performs out
of equilibrium, collective, diameter swaps, thus bringing the event-chain
ideas in the space of particle diameters.

• We demonstrate that cSwap admits the Boltzmann distribution for hard
disks in the steady state, and we provide numerical and analytical evidences
that support its ergodicity.

• We compare the performance of cSwap against the state-of-the art, equi-
librium, swap algorithm. Remarkably, in the dense regime explored, the
efficiency of cSwap over Swap increases as the dynamics of the system slows
down, in opposition to what happens for the ECMC algorithm.

• We combine cSwap and ECMC in a novel algorithm, cSwapECMC, which
achieves, at the highest density explored, a speedup of ≈ 40 over the the
state-of-the art swap algorithm.

• We apply our newly designed algorithm to produce, through fast nonequi-
librium compressions, jammed packings at very high densities.
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Conclusions

We conclude this manuscript with an overview of the contributions presented in this
thesis, and some further research directions that this work naturally leads to.

In Chapter 1 we introduced the paradigm of equilibrium sampling and the con-
cept of relaxation time by means of an overdamped Langevin dynamics. We described
two families of out of equilibrium dynamics that nevertheless sample the Boltzmann
distribution. A first one achieves this goal by means of a spatially tuned solenoidal
field, while in a second framework, known as lifting, an extended set of degrees of free-
dom, complemented with nonequilibrium evolution rules, is employed. We identified
transverse forces as a candidate to quantitatively assess the performance of irreversible
samplers, owing to the their minimal structure, and the fact that the contribution from
transverse forces can be clearly written as the perturbation of an otherwise equilibrium
process.

In Chapter 2 we built an understanding of transverse forces by studying how they
operate for a particle in an external potential. We explored the performance in the
convex harmonic well and in the non convex double well potential. In the latter, we
found that the time necessary to cross the energy barrier is reduced in the form of
prefactor in front of the Arrhenius term, and that the trajectories followed during the
barrier crossing process are altered by transverse forces. More generally, we computed
a microscopic timescale, the escape rate, which is rescaled by transverse forces, and
investigated how the fluctuation-dissipation theorem is modified, and in which situation
is preserved.

In Chapter 3 we put transverse forces at work in the p-spin spherical model, a
mean field spin glass model. We obtained equations of motion for the correlation and
response matrix, and we quantified the acceleration provided by transverse forces. Our
approach can be generalized to study nonreciprocal interactions in mean field spin
glasses, as well as in fully connected models of neural network. In the latter situation,
it is an intriguing question to ask how the behavior of the speedup is affected when
switching from a dynamics with thermal noise to one with a stochastic gradient descent
supplemented with transverse forces.

In Chapter 4 we studied, by numerical integration of the stochastic dynamics, trans-
verse forces in a dense liquid. Interestingly, the speedup granted by transverse forces is
a nonmonotonous function of the temperature, and it decreases as the glassy phase is
approached. Concomitantly to this decrease, we observed that the dynamical pathways
followed by the particles fold into closed orbits localized within their local cage, a fea-
ture quantified by measuring the odd diffusion constant. We also saw that the speedup
increases linearly with the strength of transverse forces for large enough values of the
nonequilibrium drive. When translating our findings to practical CPU time, we expect
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a trade-off between the physical acceleration provided by transverse forces, and the
decrease in precision caused by a large drift. A numerical quantification of this trade-
off would be helpful in identifying, for a given numerical scheme, the computationally
optimal drift strength.

In Chapter 5 and 6, we developed dynamical mean field and mode-coupling theo-
ries tailored for transverse forces, rationalizing the results obtained through numerical
analysis, and accessing several transport coefficients (mobility, diffusivity, viscosity)
together with their odd counterparts. To our knowledge, this is the first time these
theories are employed to compute of odd transport coefficients, and the derivation could
be extended to active systems, from nonreciprocal interacting assembly of particles to
active chiral matter, perhaps employing integration through transient methods [101,
75].

In Chapter 7, we developed a novel algorithm for continuously polydisperse systems
of hard disks, the collective Swap. It performs out of equilibrium, collective moves in the
space of particle diameters, boosting up the state-of-the-art, Swap algorithm. cSwap is
a good candidate to become the novel way-to-go algorithm for Monte Carlo sampling of
continuously polydisperse glasses. The natural venues to explore consist in extending
it to three dimensions and continuous interactions potentials. On the theoretical side a
proof of its ergodicity, as recently done for Event Chain Monte Carlo [198], is desirable.

An interesting question is the determination of the optimal irreversible drift for a
given many-body system. This task could be tackled both through analytical and ma-
chine learning approaches [151]. Both routes would proceed through the minimization
of some cost function, encoding the relaxation time of the dynamics, in the space of pos-
sible drifts. The concomitant challenge is then to identify a treatable and meaningful
cost function to optimize. It is likely that further insights into the nature of the optimal
drift could, and should be gathered from the physics of the system under consideration.
Conjectured dynamics designed within this physics-inspired framework might be lifting
schemes capable of biasing the motion of dynamical heterogeneities [28], or that mimic
externally applied shears. Whether these types of dynamics can be constructed, both
in theory and in practice, is an open question.
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Facilitated dynamics

This Appendix, which benefits of contributions by Thibaut Arnoulx de Pirey, addresses
an alternative way to speedup the convergence to the target, Boltzmann distribution.
It consists in an equilibrium overdamped Langevin dynamics with a space dependent
mobility [230, 113, 46, 171]. The possible functional forms that the mobility can take
while preserving the Boltzmann distribution are infinite, but we identify a peculiar
choice, here referred to as facilitated dynamics, that allows, in principle, to overcome
energy barriers. In a parallel development [171], this dynamics has also been recently
identified for one-particle systems using a variational principle.

We propose a generalisation the facilitated dynamics to many-body systems, like
dense liquids. We show analytically that, in finite-dimensional liquids, this choice
surprisingly yields a diffusive behavior at all temperatures and densities. In the region
where numerical integration of the facilitated dynamics is feasible, we demonstrate, by
means of computer simulations, the presence of an acceleration. We then develop a
mode-coupling theory of the facilitated dynamics: using the standard mode-coupling
expansion, we show that, perhaps pathologically, no shift in the ergodicity breaking
temperature is observed. This suggests that the richness of the facilitated dynamics is
encoded in higher order density correlations.

A1 Spatially tuned mobility

To illustrate the philosophy behind the facilitated dynamics let us consider the over-
damped Brownian Dynamics of a particle in one dimension, whose position is denoted
by x, under the action of an external potential V (x):

ẋ(t) = −µ0V
′(x) +

√
2µ0Tξ(t) (A.1)

where µ0 is the mobility, T is the temperature and ξ(t) is a white noise with zero
average and correlation ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). As explained in Chapter 1, this is an
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equilibrium dynamics with the Boltzmann distribution ρB = e −βV (x)∫
dy e −βV (y) as its station-

ary distribution. How can we accelerate the relaxation of the system to equilibrium
by tuning the mobility of the particle? If the mobility is constant, then we cannot do
much, because any value of µ0 can be absorbed by a time rescaling t′ ≡ µ0t. The speed
up produced by increasing the mobility is equivalent to a change of the units of time.

To obtain an actual speed up one needs to choose a space dependent mobility,
which cannot be reabsorbed into a rescaling of time. At the same time we want the
new dynamics to sample the Boltzmann distribution ∝ e−βV (x) in its steady state. We
therefore propose the following dynamics:

ẋ(t) = −µ(x)V ′(x) + Tµ′(x) +
√

2µ(x)Tξ(t) (A.2)

where Itō discretization is used. Eq. (A.2) describes the motion of a particle with a
space dependent mobility under multiplicative noise. We show the Eq. (A.2) is indeed
an equilibrium dynamics sampling the Boltzmann distribution in its equilibrium, steady
state.

The Fokker-Planck equation associated to Eq. (A.2) is

∂tρ(x, t) = ∂x [µ(x)V ′(x)− Tµ′(x) + T∂xµ(x)] ρ(x, t)
= ∂x [µ(x)V ′(x) + Tµ(x)∂x] ρ(x, t),

(A.3)

and one can verify by direct substitution that ρB(x) is the steady state of Eq. (A.3).

Next, we verify that Eq. (A.2) is an equilibrium dynamics, in a similar way as was
done in Chapter 1 for overdamped Langevin dynamics with constant mobility. The
Onsager-Machlup action associated to Eq. (A.2) is [71, 73]

S({x(t)}) =
∫ t

0
dτ 1

4Tµ(x(τ)) [ẋ(τ) + µ(x(τ))V ′(x(τ))]2

+
∫ t

0
dτ 1

2 [−µ(x(τ))V ′(x(τ)) + Tµ′(x(τ))]′
(A.4)

and one can verify, by looking at the ratio between a trajectory x(τ) and its corre-
sponding time reversal one, x(t− τ), that detailed balance is obeyed.

A2 Facilitated dynamics

We now need to choose an explicit expression for the mobility µ(x) to produce a speed
up in the equilibration. For the target systems we have in mind the low temperature
dynamics is hindered by large energy barriers, that the particle can overcome only
through thermally activated jumps. We mentioned in Chapter 1 that the time τ re-
quired to jump through a barrier of height ∆V scales in an Arrhenius way as τ ∝ eβ∆V .
We therefore choose a form of the mobility that can compensate the Arrhenius contri-
bution to the scaling:

µ(x) ≡ µ0 e βV (x). (A.5)
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with µ0 setting the time scale of the system. Substitution of Eq. (A.5) in Eq. (A.2)
yields

ẋ =
√

2Tµ0 e
β
2 V (x)ξ(t). (A.6)

This is what we call facilitated dynamics. It is a diffusion dynamics with a non-uniform
diffusion coefficient: a particle diffuses faster in region of high energy and more slowly
in regions of low potential energy.

The time τ needed for barrier crossing with the facilitated dynamics is

τ ∝ e −βV (xm) (A.7)

with V (xm) the value of the potential at xm, where the bottom of the energy well
is located. Note that the dependence on the barrier height has disappeared, which
suggests that a physical phenomenon usually slowed down by a rugged energy landscape
could, with the facilitated dynamics, avoid being sluggish.

We show how to obtain Eq. (A.7), explicitly computing the barrier crossing time
τ for a particle in one dimension evolving in a potential landscape V (x) as in Fig-
ure 1.1(a). The barrier crossing problem [229] can be tackled by computing the first
passage time τ(x) across xM , the point of local maximum of the potential V (x), for a
particle starting at x. For the facilitated dynamics, τ(x) satisfies the adjoint equation

µ0T e βV (x)∂2
xτ(x) = −1 (A.8)

complemented with the boundary conditions τ(xM) = 0, ∂xτ(xm) = 0. The solution
to Eq. (A.8) is

τ(x) = 1
µ0T

∫ xM

x
dx′

∫ x′

xm

dy e −βV (y). (A.9)

In the low temperature limit, a saddle point approximation yields

τ ≡ τ(xm) ≈ 1
µ0

√
2π

V ′′(xm)T (xM − xm) e −βV (xm). (A.10)

The barrier crossing time depends neither on the barrier height, nor on the potential
curvature at the top of the barrier, as is the case for the Kramers’ time for usual
overdamped Langevin dynamics, displayed in Eq. (1.23).

We demonstrate numerically that the facilitated dynamics samples the Boltzmann
distribution in Fig. A.1(a), where we compare the expected Boltzmann distribution
ρB with the numerical integration of Eq. (A.6), using Euler-Maruyama scheme for the
periodic potential

V (x) ≡ 1
2 (1 + cos 2πx) (A.11)

in the interval [0, 1) with periodic boundary conditions. The agreement between the
predicted distribution and the results from numerical integration confirms that the
facilitated dynamics follows the Boltzmann distribution in its equilibrium state. We
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Figure A.1: (a) Comparisons between the histogram of position sampled through
numerical integration of the facilitated dynamics for V (x) given by Eq (A.11) against
the Boltzmann distribution at T = 1.0. (b) Histograms of the position sampled by
the facilitated dynamics and the usual overdamped Langevin dynamics for the same
potential, at a lower temperature T = 0.1. Both dynamics are integrated with the
same time step ∆t = 1× 10−5 for 2× 107 steps.

then show in Figure A.1(b) that the facilitated dynamics overcomes energy barriers that
otherwise keep the usual overdamped Langevin dynamics confined in the observation
time window.

A2.1 Pathological cases

In this section we address the analytical computation of the relaxation time for the
facilitated dynamics, following the procedure described in Section1.2, in the case of two
convex potentials, for which a pathological behavior is observed. The first case consists
of a triangular potential, where we show that the facilitated dynamics is not confined
and the relaxation time is infinite. In the second case, we focus on a convex potential on
a finite interval. In this case, the relaxation time of the facilitated dynamics is smaller
than its equilibrium counterpart. These behaviors hint at the singular nature of the
facilitated dynamics. On the other hand, in the numerical and analytical analysis of
model glass formers, periodic boundary conditions are usually applied, leaving room
for possible applications that we pursue in the following Sections.

Triangular well

We consider a triangular well potential

V (x) = |x|. (A.12)

We first review what happens for the usual overdamped Langevin dynamics given by
Eq. (A.1). The eigenvalue problem, corresponding to the projection along the real
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space of Eq. (1.20), reads(
−T∂2

x − δ(x) + 1
4T

)
ψ(x) = λ

µ0
ψ(x) (A.13)

Which corresponds to the problem of determining the energy spectrum of a quantum
particle in an attractive Dirac delta δ(x) potential. The problem admits a unique
bound state as a ground state and has a continuum of delocalized solutions, separated
from the ground-state by a gap λ1 = 1

4Tµ0
. The relaxation time is thus

τR = 4Tµ0 (A.14)

For the facilitated dynamics, the eigenvalue problem reads instead

µ0T∂
2
xR(x) + λ e −β|x|R(x) = 0 (A.15)

with R(x) ≡ ψ(x)e
β|x|

2 the right eigenfunction of the Fokker-Planck operator associated
to the facilitated dynamics. The solution to Eq. (A.15) is a linear combination of the
Bessel functions of the first and second kind, J0 and Y0 [2]

ϕ(x) =
a+J0(T

√
λµ−1

0 e βx
2 ) + b+Y0(T

√
λµ−1

0 e βx
2 ) if x > 0

a−J0(T
√
λµ−1

0 e − βx
2 ) + b−Y0(T

√
λµ−1

0 e − βx
2 ) if x < 0

(A.16)

With the constants a±,b± determined by the continuity of ϕ(x), ϕ′(x) in 0 and by the
normalization of ψ(x) ≡ ϕ(x)e− β|x|

2 . Since such a solution exists for any value λ > 0,
the energy gap between the ground state and the first excited state is 0. This means
that

τR = +∞ (A.17)

And there is no convergence to Boltzmann equilibrium at any finite time. Physically,
this means that the facilitated dynamics cannot be confined by the triangular potential,
and it escapes toward infinity.

Logarithmic potential

We consider a logarithmic potential [229]

V (x) ≡ −2T log cos πx2a (A.18)

with −a ≤ x ≤ a. For the usual overdamped Langevin dynamics, this problem can be
mapped to a quantum problem inside an infinite potential well of width 2a [229], and
the relaxation time is

τR = 4a2

3π2µ0T
. (A.19)

For the facilitated dynamics, we want to solve the eigenvalue equation for the right
eigenvector R(x),

µ0T∂
2
xe
βV (x)R(x) = −λR(x) (A.20)
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We complement this equation with a reflecting boundary condition

J(±a, t) = ∂xr(x)|±a = 0 (A.21)

which ensures that the particle remains confined between −a and a during the diffusion
process.

The problem is easier to solve if we look at the left eigenfunction L(x), defined as

L(x) ≡ eβV (x)R(x). (A.22)

The eigenvalue equation and the boundary conditions read:∂
2
xL(x) + λ

µ0T
cos2 πx

2aL(x) = 0
∂xL(x)|±a = 0.

(A.23)

Introducing a new variable u = πx
2a and using the trigonometric identity cos2 u =

1
2(1− cos 2u) we obtain ∂

2
uL(u) + (b− 2q cos 2u)L(u) = 0
∂uL(u)|± π

2
= 0

(A.24)

with q ≡ a2λ
π2µ0T

, b = 2q. This is a Mathieu equation [2], its solution are the even
and odd Mathieu functions C(b, q, u), S(b, q, u). The spectral gap is determined by
imposing the boundary condition in Eq. (A.23) which reads

C ′(2q, q,±π2 ) = 0 (A.25)

for even solutions, and
S ′(2q, q,±π2 ) = 0 (A.26)

for odd solutions. Here the prime denotes a derivative with respect to u. A graph
of these curves as a function of q is shown in Fig. A.2. We can see that the curves
intersect the x axis for the second time at q ≈ 1

3 , implying that the first excited energy
level is

λ ≈ π2µ0T

3a2 , (A.27)

and thus implies that the relaxation time is

τR ≈
3a2

π2µ0T
(A.28)

which is greater than the relaxation time for standard overdamped Langevin dynamics
given by Eq. (A.19). In such a convex potential, the facilitated dynamics perform worse
than its standard counterpart.

While the two preceding examples serve as caveats concerning the peculiar nature
of the facilitated dynamics, the ability of the dynamics to cross the barrier, corrobo-
rated by numerical simulations, motivates us to look for an extension of the facilitated
dynamics to dense liquids.
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Figure A.2: Derivative of the Mathieu function C ′(2q, q,±π
2 ) (blue), S ′(2q, q,±π
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(orange) as a function of q. The point where the curves pass through zero determines
q, and therefore λ.

A3 Facilitated dynamics in dense liquids

We propose an extension of the facilitated dynamics to a d dimensional liquid of N
particles interacting through a central potential ∑i<j V (ri − rj), ri being the position
of particle i. In our proposal, the mobility now is not only space dependent, but also
particle dependent, to be in tune with the particle environment. Eq. (A.2), generalizes
to

ṙi = −µi(ri)
∑
j ̸=i
∇V (ri − rj) + T∇µi(ri) +

√
2Tµi(ri)ξi(t) (A.29)

With ξi(t) a white Gaussian noise with zero mean and correlations ⟨ξi(t) ⊗ ξj(t′)⟩ =
1δijδ(t − t′). Eq. (A.29) is the dynamics for a dense liquid with a space depen-
dent mobility. Following the route provided by the one-dimensional case it can be
shown that Eq. (A.29) is time reversible and samples the Boltzmann distribution
ρB ∝ e −β

∑
i<j

V (ri−rj) in the steady state.

In our choice for a generalization of the facilitated dynamics one considers the
potential energy locally felt by each particle through the interaction with the others.
The many-body version of the facilitated dynamics is obtained by choosing for the local
particle mobility µi(ri) the form

µi(ri) ≡ µ0e
β
∑

j ̸=i
V (ri−rj). (A.30)

Note that µi(ri) actually depends also on the positions of the particles that interact
with ri, and we are thus using a lightened notation. With this choice for the mobility,
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we obtain the facilitated dynamics for dense liquids:

ṙi =
√

2µ0T e β
∑

j ̸=i
V (ri−rj)ξi(t) (A.31)

Now that we have explicit equations of motions for the facilitated dynamics in
the many-body case, it would be interesting to compare its behavior to the one of
overdamped Brownian Dynamics in models where a slow down is detected. Due to the
exponential form of the mobility, a dynamical mean field theory in the limit d→ +∞
seems unfeasible. Thus, two natural routes remain: direct numerical integration of
Eq. (A.31) and the development of a mode coupling theory, as was done in this thesis
for transverse forces. Before doing that, however, we turn to an intriguing result:
the diffusion constant in the interacting particle system given by Eq. (A.31) can be
determined exactly.

A3.1 Diffusion constant

We consider a system of N interacting particles in d dimensions at fixed volume V
and temperature T . The particles motion is described by the facilitated dynamics,
Eq. (A.31). We focus on a fixed particle i and we consider its mean squared displace-

ment
〈[

ri(t)− ri(0)
]2
〉

(we will see that the result does not dependent on the choice

of the particle):〈[
ri(t)− ri(0)

]2
〉

=
∫ t

0
dt′
∫ t

0
dt′′ ⟨ṙi(t′) · ṙi(t′′)⟩

=
〈

2µ0T
∫ t

0
dt′
∫ t

0
dt′′ e

β
2
∑

j(̸=i) V (ri(t′)−prj(t′)) e
β
2
∑

j(̸=i) V (ri(t′′)−rj(t′′))

× ξi(t′) · ξi(t′′)
〉

=
〈

2µ0Td
∫ t

0
dt′ e β

∑
j(̸=i) V (ri(t′)−rj(t′))

〉
(A.32)

where ⟨...⟩ denote an average of the dynamics over the realizations of the noise ξj(t)
for j = 1, ..., N , and we have made use of the fact that the noise is Gaussian. Note
that no force-force correlations implying memory effects appear, in opposition to the
usual overdamped Langevin dynamics.

Assuming that the system is ergodic we can replace the time integral of the average
over the noise with the equilibrium average in the canonical ensemble〈[

ri(t)− ri(0)
]2
〉

t→+∞→ 2µ0Td t

Z(T, V,N)N !

∫
dr1...drN e β

∑
j( ̸=i) V (ri−rj) e −β

∑
k<l

V (rk−rl)

(A.33)
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where Z(T, V,N) ≡ 1
N !
∫

dr1...drNe−β
∑

k<l
V (rk−rl) is the partition function. We now

observe that the factor in the Boltzmann weight involving particle i simplifies with the
mobility, so that the integral over dri is unconstrained through all the volume V . This
means that:〈[

ri(t)− ri(0)
]2
〉

= 2µ0Td t

Z(T, V,N)N !

∫
dr1...drN e β

∑
j(̸=i) V (ri−rj)

e−β
∑

k<l
V (rk−rl)

= 2µ0Td t

Z(T, V,N)N !

∫
dr1 . . . drN e −β

∑
k<l,k,l̸=i

V (rk−rl)

= 2µ0Td t

Z(T, V,N)N !V
∫

ΠN
j=1,j ̸=idrj e −β

∑
k<l,k,l̸=i

V (rk−rl)

= 2µ0Td tV
Z(T, V,N − 1)(N − 1)!

Z(T, V,N)N !
(A.34)

We now introduce the free energy, F (T, V,N) ≡ − 1
β

logZ(T, V,N), the density
ρ0 ≡ N

V
and the fugacity z ≡ eβµchem , with the chemical potential µchem ≡ ∂F

∂N
to

simplify the previous expression〈[
ri(t)− ri(0)

]2
〉

= µ0Td t
V

N
e−β(F (T,V,N−1)−F (T,V,N)) ∼ 2µ0Td t

V

N
eβµchem (A.35)

so that we can finally write〈[
ri(t)− ri(0)

]2
〉

= 2µ0Td z

ρ0
t ≡ 2dDt (A.36)

Eq. (A.36) is a remarkable result. Not only we obtained an explicit expression
for the diffusion constant, whose analytical computation is often unfeasible for system
undergoing standard overdamped Langevin dynamics, but we can also see from its
expression that no sign of freezing of the long time diffusion appears at any temperature
and dimensions. The dependence from these two parameters appears in fact in D only
in a controllable way, through the fugacity and a term linear in T . s

The result of this section is an encouraging signal for non trivial behavior of sys-
tems undergoing facilitated dynamics, for which we thus proceed with a numerical
exploration of a liquid of interacting particles.

A3.2 Numerical exploration

We simulate a system of N = 128 particles interacting through the pairwise harmonic
potential

V (r) = ϵ

2

(
1− r

σ

)2
θ(r − σ) (A.37)

where r is the interparticle distance, σ is the particle diameter and ϵ is the strength of
interaction of the potential. We measure temperature in units of ϵ/kB, length in units
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Figure A.3: Comparison between the usual overdamped Langevin dynamics and the
facilitated (here denoted ’modified’) dynamics for harmonic sphere at T = 0.1 Left:
plots of energy as a function of time. At long times, the average value of the energy and
its fluctuations are the same for standard and facilitated dynamics. Center: evolution of
the energy at initial times, from which we see that the facilitated dynamics has a faster
convergence. Right: mean squared displacement. The mean squared displacement
achieved through the facilitated dynamics is an order of magnitude higher than its
standard counterpart.

of σ and time in units of σ2/µ0ϵ. Periodic boundary conditions are applied, and the size
L of the simulation box is determined by the packing fraction ϕ ≡ πσ3/6L3 = 1. We
simulate both standard overdamped Langevin dynamics and the facilitated dynamics,
Eq. (A.31) using the Euler-Maruyama scheme. The time step is ∆t = 0.0001.

We simulate the dynamics at the temperature T = 0.1, and we compute the po-
tential energy per particle and the average mean squared displacement of the particle
in the system as a function of time. We start both the dynamics from the same initial
conditions and we simulate 25 independent runs for each temperature, over which we
do an average. Results are shown in Fig. A.3. While at the high temperature the two
dynamics show a similar convergence rate toward equilibrium, as the temperature is
lowered the facilitated dynamics exhibits a faster relaxation, with a higher diffusion
constant.

The gain in the relaxation times showed by the Facilitated dynamics translates
in a gain in computational time only at high temperature: the exponential term in
Eq. (A.31) grows as the temperature is lowered, posing a problem for the numerical
convergence of the Facilitated Dynamics. This can be qualitatively seen through a
back of the envelope computation: if we assume that the energy per particle has a
Gaussian distribution with variance σ2

V , the mobility µ has a log-normal distribution,
with a variance e β2σ2

V , which diverges as T → 0, assuming σ2
V ∼ T .

The back-of-the envelope calculation above suggests that the facilitated dynamics
is hardly applicable in practice to low temperature or high density scenarios. On the
other hand, the calculation of the diffusion constant makes the facilitated dynamics an
appealing theoretical tool to probe the influence of activated events in the theory of the
glass transitions, and the interplay between the Boltzmann energy landscape and the
dynamics of the system itself. For this reason, we push forward our analytical study
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of the facilitated dynamics. In the next Section, we address the mode-coupling theory
of the facilitated dynamics.

A4 Mode Coupling Theory

This section is devoted to the development of a mode-coupling theory of the facilitated
dynamics. We first take a more general angle, and work with the dynamics with space
dependent mobility given by Eq. (A.29).

A4.1 Arbitrary mobility

We perform a computation similar in spirit to the one done in Chapter 6 for the mode
coupling theory of transverse forces. The evolution operator associated to Eq. (A.29)
is

Ω =
∑
i

∇i · (−µiFi − T (∇iµi) + T∇iµi)

=
∑
i

∇i · (−µiFi + Tµi∇i)
(A.38)

with Fi ≡ −
∑
i<j ∇iV (ri− rj). The operator Ω governs the equation of motion for the

probability distribution of the particle positions, ρ(rN),

∂tρ(rN , t) = Ωρ(rN , t). (A.39)

The equilibrium solution is ρB(rN) ∝ e −β
∑

i<j
V (ri−rj), as ΩρB(rN) = 0. We introduce

the density mode
n(q) ≡

∑
i

e −iq·ri (A.40)

and the dynamical structure factor

S(q, t) ≡ 1
N
⟨n∗(q)eΩtn(q)⟩ (A.41)

The average ⟨. . .⟩ denotes an average over the Boltzmann distribution. The operators
act on everything on their right (ρB included), unless they are enclosed in parenthesis.
We introduce the Laplace transform f(z) ≡

∫+∞
0 dte−ztf(t) and an operator P that

projects along the space of density modes

P ≡ n(q)⟩ 1
NS(q)⟨n

∗(q). (A.42)

The projection operator P is accompanied by the operator Q ≡ 1− P , which project
along the space orthogonal to n(q). Using the projection-operator formalism adopted in
Chapter 6 we obtain an equation for the Laplace transform of the dynamical structure
factor,

zS(q, z)− S(q) = −ω(q)S(q, z) + M̃(q, z)S(q, z) (A.43)
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where we have introduced the decay rate ω(q) and the memory kernel M̃(q, z).

ω(q) = − 1
NS(q)⟨n

∗(q)Ωn(q)⟩

M̃(q, z) = 1
NS(q)

〈
n∗(q)ΩQ 1

z −QΩQΩQ(z)QΩn(q)
〉 (A.44)

The kernel M̃ can be expressed in term of its irreducible component. In contrast with
the transverse forces case, we do not expect terms orthogonal to q to be relevant in the
dynamics. We therefore follow the prescription of Kawasaki [152], and we introduce
an irreducible operator

Ωirr ≡ QΩQ−QΩn(q)⟩ 1
NS(q)ω(q)⟨n

∗(q)ΩQ. (A.45)

Using the resolvent identity
1

z −QΩQ =
(

1− 1
z −QΩQQΩn(q)⟩ 1

NS(q)ω(q)⟨n
∗(q)ΩQ

)
1

z − Ωirr
(A.46)

we can write M̃(q, z) in term of an irreducible memory kernel M(q, z)

M̃(q, z) = M(q, z)
1 + ω(q)−1M(q, z) (A.47)

with
Mirr(q, z) ≡

1
NS(q)

〈
n∗(q)ΩQ 1

z − Ωirr
QΩn(q)

〉
. (A.48)

The equation for S(q, z), Eq. (A.43) becomes

S(q, z) = S(q)
z + ω(q)

1+ω(q)−1M(q,z)

, (A.49)

or passing to the representation in time,

∂tS(q, t) = −ω(q)S(q)−
∫ t

0
dτω(q)−1M(q, t− τ)∂τS(q, τ). (A.50)

From a formal point of view, this is the standard equation for the evolution of a
correlation function obtained through the Mori-Zwanzig projection operator formalism.
We now compute the rate ω(q):

ω(q) = − 1
NS(q)⟨n

∗(q)Ωn(q)⟩

= − 1
NS(q)

∑
i

⟨n∗(q)∇i · (−µiFi + Tµi∇i)n(q)⟩

= + i

NS(q)
∑
i

q · ⟨ e iq·ri (−µiFi + Tµi∇i)n(q)⟩

= + i

NS(q)
∑
i

q · ⟨ e iq·ri (−µiFi + Tµi∇i)n(q)⟩

= Tq2

NS(q)
∑
i

⟨µi(ri)⟩

= Tq2

S(q)⟨µ(0)⟩

(A.51)
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where we have introduced the Fourier transform of the mobility field

µ(q) ≡ 1
N

∑
i

e −iq·riµi(ri). (A.52)

Note that µ(0) is the Fourier transform of the mobility field evaluated at q = 0. The
standard result ω(q) = µ0Tq2

S(q) is recovered when µi(ri) = µ0, since in that case µ(0) = 1.

We proceed by performing a mode coupling expansion of the memory kernel.

A4.2 Mode coupling expansion

To compute M(q, t) in Eq.(A.48), we must resort to approximation schemes. At the
moment, it is unclear how the mode-coupling expansion should be implemented in the
presence of a spatially dependent mobility field, that can in principle generate higher-
order dynamical correlations among the particles. Here we take the most pedestrian
approach, and adopt the usual mode-coupling expansion in terms of products of density
modes:

QΩn(q) ≈ 1
2
∑

k1,k2

1
N2S(k1)S(k2)

⟨n∗(k1)n∗(k2)QΩn(q)⟩n(k1)n(k2) (A.53)

The average on the right hand side is composed by two term:

⟨n∗(k1)n∗(k2)QΩn(q)⟩ = ⟨n∗(k1)n∗(k2)Ωn(q)⟩ − ⟨n∗(k1)n∗(k2)PΩn(q)⟩. (A.54)

Let us compute the first one

⟨n∗(k1)n∗(k2)Ωn(q)⟩ =
∑
i

⟨n∗(k1)n∗(k2)∇i · (−µiFi + Tµi∇)n(q)⟩

= −
∑
i

⟨∇i(n∗(k1)n∗(k2)) · (−µiFi + Tµi∇)n(q)⟩

= T
∑
i

iq · ⟨∇i(n∗(k1)n∗(k2))µie−iq·ri⟩

= −TNδk2+k1,q [q · k1⟨n∗(k2)µ(q− k1)⟩+ q · k2⟨n∗(k1)µ(q− k2)⟩]
(A.55)

The δk2+k1,q comes from the translational invariance of the system. The second term
of Eq. (A.54) is, using a convolution approximation,

⟨n∗(k1)n∗(k2)PΩn(q)⟩ = ⟨n(k1)∗n(k2)∗n(q)⟩ω(q)
≈ Nδk1+k2,qS(k1)S(k2)S(q)ω(q)
= NTq2δk1+k2,qS(k1)S(k2)⟨µ(0)⟩

(A.56)

Summing the two contributions, Eq. (A.54) can be rewritten as

⟨n∗(k1)n∗(k2)QΩn(q)⟩ = NTρ0S(k1)S(k2)⟨µ(0)⟩⟩δk1+k2,q

× [q · k1c̃µ,q(k2) + q · k2c̃µ,q(k1)]
(A.57)
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where we have introduced a ’direct correlation function’-like quantity c̃µ,q(k) dressed
by the dynamics that we denote by

ρ0c̃µ,q(k) ≡ 1− ⟨n(k)∗µ(k)⟩
⟨µ(0)⟩S(q− k)S(k) . (A.58)

For µ = µ0, c̃µ,q(k) reduces to the usual direct correlation function c|q− k|. The next
approximation concerns the evolution of the density correlations

⟨n(k4)∗n(k3)∗eΩirrtn(k2)n(k1)⟩ ≈ ⟨n(k4)∗n(k3)∗eΩtn(k2)n(k1)⟩
≈ N2S(k1, t)S(k2, t)[δk1,k3δk2,k4 + δk1,k4δk2,k3 ]

(A.59)

Putting everything together, we can rewrite the memory kernel as

Mirr(q, t) ≈
1

4N5S(q)
∑

k1,k2,k3,k4

1
S(k1)S(k2)S(k3)S(k4)

× ⟨n∗(k1)n∗(k2)QΩn(q)⟩⟨n(q)∗ΩQn(k3)n(k4)⟩
× ⟨n(k3)∗n(k4)∗eΩirrtn(k1)n(k2)⟩

= 1
2N3

∑
k1,k2

1
S(k1)2S(k2)2 |⟨n

∗(k1)n∗(k2)QΩn(q)⟩|2S(k1, t)S(k2, t)

= T 2ρ2
0

2NS(q)
∑
k1

⟨µ(0)⟩2⟩[q · k1c̃µ,q(q− k1) + q · (q− k1)c̃µ,q(k1)]2

× S(k1, t)S(q− k1, t)

= T 2ρ0⟨µ(0)⟩2
2S(q)

∫ dk
(2π)3 ⟩[q · k1c̃µ,q(q− k1) + q · (q− k1)c̃µ,q(k1)]2

× S(k1, t)S(q− k1, t)

(A.60)

Or using the definition of the frequency ω(q)

ω−1(q)M(q, t) = Tρ0⟨µ(0)⟩
2q2

∫ dk
(2π)3 [q · kc̃µ,q(q− k) + q · (q− k)c̃µ,q(k)]2

× S(k, t)S(q− k, t)
(A.61)

Together with Eq (A.58) is the expression for the irreducible memory kernel in the
mode coupling approximations of a dynamics with a spatially dependent mobility. For
µi(ri) = µ0, the usual expression is recovered.

We can now specialize to the case of facilitated dynamics

A4.3 Mode coupling theory for facilitated dynamics

We take for µi(ri) the expression given by Eq. (A.30), the choice leading to the facil-
itated dynamics. In this case, a calculation similar to the one done for the diffusion
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constant in Section A3.1 shows that

⟨µ(0)⟩ = µ0
ϕ

ρ0

ω(q) = q2µ0T
ϕ

ρ0

⟨n(q) ∗ µ(q)⟩ = ⟨µ(0)⟩ = µ0
ϕ

ρ0

ρ0c̃µ,q(k) = 1− 1
S(|q− k|)S(k) = ρ0c̃µ,q(q− k).

(A.62)

The resulting equation of motion for the dynamics structure factor S(q, t) is

∂tS(q, t) = −q2µ0T
ϕ

ρ0
−
∫ t

0
dτω(q)−1Mfd(q, t− τ)∂τS(q, τ, (A.63)

where Mfd is the mode-coupling memory kernel for the facilitated dynamics,

ω(q)−1Mfd(q, t− τ) = µ0Tϕq
2
∫ dk

(2π)3 (ρ0c(k)c(q − k)− c(k)− c(q − k))2

× S(k, t)S(q − k, t)
(A.64)

Eq. (A.63) and Eq. (A.64) constitute a first attempt at building a mode-coupling the-
ory for the facilitated dynamics. It is however very likely that the nature of the facili-
tated dynamics cannot be captured by the most common mode-coupling approximation
scheme. This is also suggested when trying to locate the glass transition through a
schematic approximation, as done in Chapter 6.3.4.

A4.4 Ergodicity breaking within the schematic approximation

We introduce a nonergodicty parameter ϕ∞ ≡ limt→+∞
S(q,t)
S(q) . It can be determined

using the long time limit of Eq (A.63):
ϕ∞

1− ϕ∞
= ω(q)−2Mfd(q, t→∞). (A.65)

As a first approach, we compute the long time limit of the memory kernel within the
schematic approximation, as done in Sec. 6.3.4. We obtain

ω(q)−1M schematic
fd ≈ µ0TS

2
0
ϕ

ρ2
0
q2

0ϕ
2
∞

∫
|k|=q0,|q−k|=q0

dk
(2π)3

=
√

3
16π2µ0TS

2
0
ϕ

ρ2
0
q3

0

(A.66)

where as customary in the schematic approximation, q0 is the wavevector correspond-
ing to the first peak of the structure factor, and S0 is the amplitude of the peak.
Substitution of this expression in Eq. (A.65) yields

ϕ∞

1− ϕ∞
= λeq

µ0Tq2
0
ϕ2

∞ (A.67)
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with λeq =
√

3
16π2

µ0TS2
0

ρ0
q3

0. This equation is the same as the one found for the usual
overdamped Langevin dynamics, as reproduced in Chapter 6.3.4, and the thus a glass
transition at the same location as for usual overdamped Langevin dynamics is expected
take place. this is in contrast with our finding for the diffusion constant.

Further efforts to understand the facilitated dynamics and its possible applications
could proceed along two directions: the first one consist in employing more sophisti-
cated numerical schemes for the integration of the equations of motion, in the spirit
of [46, 171]. Although a lower temperature below which numerical integration becomes
unfeasible is probably always present, the hope is to push this boundary to temper-
atures low enough to be able to measure the diffusion coefficient for the facilitated
dynamics in a glassy phase and compare it with the prediction obtained here. On the
analytical side, there is certainly more to be explored by means of mode-coupling the-
ory. One could for example study what happens when only terms involving pairwise
interactions are kept in the expression of µi(ri), i.e. by writing

µi(ri) = eβ
∑

j
V (ri−rj) = µ0Πje

βV (ri−rj)

≡ µ0Πj(1 + f̃(rij)) ≈ 1 +
∑
j

f̃(rij) (A.68)

with f̃(rij) a ’negative temperature Mayer functions’. This procedure would lead to
consider only contribution from terms with a pairwise nature, and in this case the
standard mode-coupling expansion schemes could prove more fruitful and faithful. An-
other possibility could be to resort to generalized mode coupling theory, an extension
of mode-coupling designed to take into account higher order density correlations [142].
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Breaking detailed balance accel-
erates relaxation: a proof for dis-
crete states systems

In this Section we show that breaking detailed balance in a Markov chain while pre-
serving the stationary distribution reduces the time to reach the stationary state. We
follow the proof of Ichiki and Ohzeki [136] for discrete-state Markov processes in con-
tinuous time. Let Pi(t) be the probability that the system is in state i at time t. The
probability Pi(t) evolves in time according to the master equation

dPi(t)
dt =

N∑
j=1

ωijPj(t)−
N∑
j=1

ωjiPi(t) (B.1)

where ωij is the transition rate from state j to state i. We assume the resulting Markov
chain to be irreducible. For the system to admit a given steady state distribution πi,
the transition rates must satisfy

N∑
j=1

ωijπj =
N∑
j=1

πiωji (B.2)

This condition of stationarity of πi, known in the Markov chain literature as global
balance, can be satisfied by imposing the sufficient condition

ωijπj = ωjiπi (B.3)

for all configurations i, j. Eq. (B.3) is the detailed balance condition for discrete Markov
chains. It is a sufficient, but not necessary, condition for Eq. (B.2) to be true.

The master equation Eq. (B.1) can be rewritten in a rotated basis:

dRi(t)
dt =

N∑
j=1

WijRj(t) (B.4)
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with Ri(t) ≡ Pi(t)/
√
πi, Wij

i ̸=j
≡ π

−1/2
i ωijπ

1/2
j and Wii ≡ −

∑
j ̸=i ωji. The matrix W is

symmetric only when the detailed balance condition Eq. (B.3) holds, but in general,
the symmetric part of W is negative semi-definite, and the Perron-Frobenius theorem
ensures that W has a non-degenerate eigenvector, √πi, with eigenvalue λ0 = 0, which is
also the largest eigenvalue in its spectrum. We see therefore that exponential relaxation
to the steady state is ensured, with a relaxation rate given by (minus) the largest non
zero eigenvalue of the spectrum.

Eq. (B.4) is the starting point of the proof by Ichiki and Ohzeki concerning the
relaxation times of an irreversible Markov chain, which we hereafter reproduce. The
outcome of the proof is the possibility to accelerate the relaxation dynamics by break-
ing detailed balance. We start from Eq. (B.4), and we note that W can always be
decomposed as the sum of a symmetric part S ≡ W+WT

2 and in an antisymmetric part
A ≡ W−WT

2 :
W = S + A. (B.5)

The matrix S is associated to a reversible Markov process with equilibrium distribu-
tion πi, as we now demonstrate. We express the dynamical process dRi(t)

dt = ∑
j SijRj(t)

back to its original basis Pi(t) ≡
√
πiRi(t),

d
dtPi(t) =

N∑
j=1

σijPj(t)−
N∑
j=1

σjiPi(t) (B.6)

where the matrix σij is related to the stochastic process ωij for the original, possibly
nonreversible process of Eq. (B.1) by:

σij = 1
2

[
ωij + πi

πj
ωji

]
, (B.7)

To show that Eq. (B.6) is a reversible Markov process in continuous time, we need to
show that

(i) σij ≥ 0.

(ii) ∑j ̸=i σji = −σii = ∑
j ̸=i ωji for any fixed i, i.e. the sum of the escape rates from

state i is the same as the one of the original process.

(iii) Detailed balance with respect to the stationary distribution πi is obeyed: σijπj =
σjiπi

Property (i) is obvious from Eq. (B.6) and the fact that ωij ≥ 0. Property (ii) can be
proven using the stationary condition ∑j ωijπj = ∑

j ̸=i ωijπi:

∑
j ̸=i

σji = 1
2
∑
j ̸=i

ωji + 1
2
∑
j ̸=i

πj
πi
ωij = 1

2
∑
j ̸=i

ωji + 1
2πi

∑
j ̸=i

ωjiπi =
∑
j ̸=i

ωji. (B.8)
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Property (iii) is verified with an explicit computation

σijπj = 1
2

[
ωij + πi

πj
ωji

]
πj = πi

1
2

[
ωji + πj

πi
ωij

]
= πiσji. (B.9)

The above reasoning proves that σij describes an equilibrium Markov process in con-
tinuous time with equilibrium distribution πi. The matrix A can thus be seen as a
nonequilibrium perturbation of an otherwise equilibrium process.

We are going to prove that, for any fixed S

Re λW1 − λS1 ≤ 0 (B.10)

where λW1 and λS1 are the first eigenvalues below zero of the matrices W and S, re-
spectively. Relation (B.10) implies that the relaxation times of a dynamics that breaks
detailed balance are shorter than their equilibrium counterparts.

To prove the statement, we introduce the characteristic polynomials pW (λ) and
pS(λ). For a square N -dimensional matrix M and a complex number λ the character-
istic polynomial pM(λ) is defined as

pM(λ) ≡ det(λ1N −M) (B.11)

where 1N is the N -dimensional identity matrix. The spectrum of M is determined by
solving the equation pM(λ) = 0. The proof of relation (B.10) is done by establishing
two inequalities regarding the characteristic polynomials pW (λ) and pS(λ):

p′
W (λ)

∣∣∣∣
λ=0
≥ p′

S(λ)
∣∣∣∣
λ=0

(B.12)∣∣∣∣pW (λ)
λ

∣∣∣∣ ≥ pS(λ)
Re λ ∀ λ s.t. λS1 < Re λ < λS0 (B.13)

A graphical representation of these two properties is given in Fig. B.1. The two
propositions combined together give relation (B.10).

Instrumental to the proof will be the Ostrowsky-Taussky inequality [131], which
states that, if M is a matrix such that M+M†

2 is positive definite, then

|det M| ≥ det
(

M + M†

2

)
. (B.14)

Proof of Eq. (B.14). Let us define an Hermitian matrix SM ≡ 1
2(M + M†) and a skew-

Hermitian matrix AM ≡ 1
2(M −M†), so that M = SM + AM. The Ostrowski-Taussky

inequality is equivalent to
| det

(
1 + S−1

M AM
)
| ≥ 1. (B.15)

To proceed further, note that the spectrum of S−1
M AM is complex. Let tk be an eigen-

value of S−1
M AM with associated eigenvector uk, S−1

M AMuk = tkuk. Multiplying both
side of this equation by S1/2

M , and introducing the vector u′
k ≡ S1/2

M uk, we obtain

S−1/2
M AMS−1/2

M u′
k = tku′

k. (B.16)
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Note that to write this equation, we used the fact that the matrix SM is positive
definite. We have thus shown that u′

k is an eigenvector of the matrix S−1/2
M AMS−1/2

M
with eigenvalue tk. Since S−1/2

M AMS−1/2
M is Skew-Hermitian, tk is imaginary. This means

that
| det

(
1 + S−1

M AM
)
| = Πk|1 + tk| ≥ 1, (B.17)

which proves Eq. (B.15), and thus the Ostrowsky-Taussky inequality in Eq. (B.14).

We now have all the tools needed to derive properties (B.12) and (B.13).

Proof of property (B.12). We apply Ostrowski-Taussky inequality Eq. (B.14) to
the matrix M ≡ λ1N −W, with λ real and positive:

det (λ1N)−W ≥ det (λ1N − S) (B.18)

Note that M+M†

2 = λ1N − S, which is positive definite for λ ≥ 0. We can therefore
write

pW (λ) ≥ pS(λ), ∀ λ ≥ 0 (B.19)

Since we know that pW (λ) = pS(λ) = 0 and that the characteristic polynomial is a
smooth function of λ, this statement implies property (B.12).

Proof of property (B.13). We start by looking at pW (λ):

pW (λ) = det
(
λ1N −W + (λ1−W)†

2 − (λ1N −W)†

2

)
= det(λ1N − S + A)
= det(λ1N −ΛS + A)
= λdet(λ1N−1 − Λ̃S + Ã)

(B.20)

ΛS is the diagonal matrix associated to S, and M̃ denotes the N − 1-dimensional
matrix obtained by removing from the N -dimensional matrix M its first row and its

Figure B.1: Graphical interpretation of the proof of Ichiki and Ohzeki, taken from [136].
The plot show characteristic polynomials of W (dashed line) and S (solid line). Eq. (B.12)
enforce the dashed to be above the solid line for Re λ = 0+, while Eq. (B.13) guarantees the
solid line to be above the dashed one until the horizontal axis is hit again.
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first column. The last passage is justified by the fact that (λ1N − ΛS + A)11 = λ −
λS0 = λ. We now apply the Ostrowski-Taussky inequality Eq. (B.14) to the matrix
M ≡ λ1N−1 − Λ̃S + Ã:

|detλ1N−1 − Λ̃S + Ã| ≥ det
(
Re λ1N−1 − λ̃

)
(B.21)

Note that M+M†

2 = Re λ1N−1− λ̃ is positive definite for λS1 < Re λ < λS0 , thus defining
the interval where the equality holds. Using the relation (B.20) on both sides of the
inequality we obtain the result∣∣∣∣pW (λ)

λ

∣∣∣∣ ≥ pS(λ)
Re λ ∀ λ s.t. λS1 < Reλ < λS0 (B.22)

which is property (B.13), and the proof is concluded. We have thus showed that
breaking detailed balance in discrete Markov processes accelerates relaxation towards
the stationary distribution.
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Appendix C

The conductance bounds the mix-
ing time

In this Appendix we consider a Markov Chain in discrete space and time. Follow-
ing [173], we introduce the mixing time tmix, a complementary quantity to the relaxation
time that tracks the convergence of a probability distribution to its target stationary
measure, considering a worst-case scenario for the initial condition. The mixing time
is bounded from above and below by the conductance Φ∗, which is, in a nutshell, the
smallest transition probability for a Markov Chain, when a conditioning on the starting
set is taken into account. The bound on the mixing time is

C

Φ∗ ≤ tmix ≤
C ′

Φ∗2 log 1
πmin

(C.1)

where πmin ≡ mini∈Ω πss(i), with Ω the set of possible configurations of states i and πss

the stationary state of the Markov chain. While the constants C and C ′ depend on
whether the Markov chain is reversible or not, the dependence on the conductance is
the same for all Markov chains. Since, as we will show, the conductance is the same
for a reversible Markov chain with equilibrium distribution πss and a lifted Markov
chain with the same steady state distribution, it gives information on the maximal
efficiency achievable using lifting schemes. If a reversible Markov chain has a mixing
time closer to the upper bound ∼ 1

Φ∗2 , there is then hope for an effective lifting to
achieve a square-root reduction of the mixing time of the system [63].

C1 Definition of the mixing time

We denote by P (i, j) the transition probability from state i to state j of the Markov
chain under consideration. The master equation in discrete time for the time dependent
probability πt(i) is

πt+1(i) =
∑
j∈Ω

πt(j)P (j, i) (C.2)
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The steady state distribution πss satisfies the stationary condition

πss(i) =
∑
j∈Ω

πss(j)P (j, i) (C.3)

Given an initial condition π0, the distribution at time t can be constructed by iteratively
applying Eq. (C.2):

πt(i) =
∑
j∈Ω

π0(j)P t(j, i) ≡ π0P
t(i) (C.4)

with P t(j, i) the j, i entry of the matrix Pt.

To define the mixing time, we first introduce the distance from stationarity d(t) as

d(t) ≡ sup
µ
∥µP t − πss∥TV (C.5)

where µ is a probability distribution defined on Ω, and ∥·∥TV denotes the total variation
distance

∥µP t − πss∥TV ≡
1
2
∑
j∈Ω
|
∑
i

µ(i)P t(i, j)− πss(j)| (C.6)

The distance from stationarity is a measure of how close a Markov chain that has
evolved up to time t is to the stationary distribution πss.

The mixing time is defined by fixing a conventional cutoff of 1/4 for the distance
from stationarity

d(tmix) ≡
1
4 . (C.7)

After defining the mixing time, we turn to the definition of the conductance.

C2 The conductance

To define the conductance, we first introduce the ergodic flow Φ(S) from a given set
S ⊆ Ω

Φ∗ ≡
∑
i∈S

∑
j∈Sc πss(i)P (i, j)
πss(S) , (C.8)

where Sc is the set complementary to S in Ω. In other words, the ergodic flow Φ(S) is
the conditional probability of observing a transition that exits through the boundaries
of S, given that within S the system is in its steady state. The conductance Φ∗ is then
defined as the smallest possible ergodic flow,

Φ∗ ≡ min
S|πss(S)≤1/2

Φ(S). (C.9)

The condition π(S) ≤ 1/2 is introduced because, using the fact that in the steady state∑
i∈S

∑
j∈Sc πss(i)P (i, j) = ∑

i∈Sc

∑
j∈S πss(i)P (i, j), it can be showed that ϕ(Sc) < ϕ(S)

provided that π(S) > 1/2.
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A simple example of computation of the conductance is given by a random walker
on a lattice of size L. At every discrete time, the random walker can move to the left
site or to the right site with probability 1/2. The minimum ergodic flow is achieved
choosing for S a block of length L/2, which gives a conductance Φ∗ = 2

L
. The bounds

for the mixing time in Eq. (C.1) then reads O(L) ≤ tmix ≤ O(L2 logL).

We proceed by defining lifted Markov chains and their relation with conductance
and reduction of the mixing time.

C2.1 Lifted Markov chains, and their conductance

In the Markov chain literature [63], a lifting of the configuration space Ω is a larger
configuration space Ω̂ and a surjective function f : Ω̂→ Ω that collapses a state α ∈ Ω̂
onto a state i ∈ Ω. Note that multiple states of the lifted space can be mapped to the
same configuration of the original space. For a fixed configuration i ∈ Ω, we denote by
f−1(i) ⊆ Ω̂ the set of configurations α ∈ Ω̂ such that f(α) = i. The lifted configuration
space is accompanied by a lifted steady state distribution π̂ss and a lifted transition
probability matrix P̂ (α, β). In order to define a lifting of the Markov chain P (i, j),
they must obey two properties. The first one is that upon integrating out the variables
of the extended phase space, the distribution π̂ss must collapse onto πss, namely∑

α∈f−1(i)
π̂ss(α) = πss(i) (C.10)

the second property relates, in a non unique manner, the probability flows of the lifted
Markov chain the ones of its collapsed counterpart:∑

α∈f−1(i)

∑
β∈f−1(j)

π̂ss(α)P (α, β) = πss(i)P (i, j). (C.11)

In particular, Eq. (C.11) implies that lifted Markov chains do not open new transition
channels in the collapsed configurations space, but can accelerate the existing one,
hopefully by transforming diffusive transition processes into ballistic ones. In this
thesis, we were interested mainly in liftings of the form Ω̂ = Ω × V with V a new
set of extra degrees of freedom (the self-propulsions in the active particle analogy in
Chapter 1, or the activity label and self-propulsion direction for the Event Chain Monte
Carlo algorithm in Chapter 7).

The conductance Φ̂∗ of a lifted Markov chain cannot be larger then the one of its
original counterpart. This is because using Eq. (C.10) and Eq. (C.11) we have

Φ̂(f−1(S)) ≡
∑
α∈f−1(S)

∑
β∈f−1(S)c P̂ (α, β)π̂ss(α)
πss(f−1(S)) = Φ(S) (C.12)

for every S belonging to the original configuration space Ω. In particular this implies
that Φ̂∗ ≤ Φ∗. The lower bound presented in Eq. (C.1) for the mixing time remains
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valid also for the lifted Markov chain, and there is room for improvement in the case
where the tmix is closer to the upper bound in the original chain and closer to the lower
bound in the lifted Markov chain.

C3 Proof of the lower bound for tmix

C3.1 Preliminary lemmas

Before proceeding with the proof of the lower bound, we discuss two useful results. The
first one is a possible rewriting of the total variation distance between two probability
distributions µ and ν on Ω

∥µ− ν∥TV =
∑
i∈Ω

µ(i)≥ν(i)

[µ(i)− ν(i)], (C.13)

which can be shown in the following way

∥µ− ν∥TV = 1
2
∑
i∈Ω
|µ(i)− ν(i)|

= 1
2

∑
i∈Ω

µ(i)≥ν(i)

[µ(i)− ν(i)] + 1
2

∑
i∈Ω

µ(i)≤ν(i)

[ν(i)− µ(i)]

= 1
2

∑
i∈Ω

µ(i)≥ν(i)

[µ(i)− ν(i)] + 1
2

∑
i∈Ω

µ(i)≤ν(i)

[ν(i)− µ(i)]

+ 1
2

∑
i∈Ω

µ(i)≥ν(i)

[ν(i)− µ(i)]− 1
2

∑
i∈Ω

µ(i)≥ν(i)

[ν(i)− µ(i)]

=
∑
i∈Ω

µ(i)≥ν(i)

[µ(i)− ν(i)] + 1
2
∑
i∈Ω

[π(i)− µ(i)]

=
∑
i∈Ω

µ(i)≥ν(i)

[µ(i)− ν(i)],

(C.14)

where we made use of the fact that ∑i∈Ω µ(i) = ∑
i∈Ω ν(i) = 1.

The second useful lemma is the fact that the total variation distance, defined in
Eq. (C.5) is a decreasing function of time, d(t+ 1) ≤ d(t). For two arbitrary distribu-
tions on Ω, µ and ν, we have

∥µP − νP∥TV ≤ ∥µ− ν∥TV (C.15)
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since, using the triangle equality, we have

∥µP − νP∥TV = 1
2
∑
i

|
∑
j

µ(j)P (j, i)− ν(j)P (j, i)|

≤ 1
2
∑

i, j ∈ Ω|µ(j)− ν(j)|P (j, i)

= 1
2
∑
i∈Ω
|µ(i)− ν(i)| = ∥µ− ν∥TV.

(C.16)

Through Eq. (C.15), we have

d(t+ 1) = sup
µ
∥µP t+1 − πss∥TV

= sup
µ
∥µP t+1 − πssP

t+1∥TV

≤ sup
µ
∥µP t − πssP

t∥TV

= sup
µ
∥µP t − πss∥TV = d(t),

(C.17)

which concludes our preliminary demonstration. Note that in particular, Eq. (C.15)
implies that

∥µP t+1 − νP t∥TV ≤ ∥µP t − νP t−1∥TV ≤ . . . ≤ ∥µP − ν∥TV. (C.18)

This inequality will be useful later.

C3.2 Proof of Eq. (C.1)

Following [173], we start by observing that

d(t) = sup
µ
∥µP t − πss∥TV ≥ ∥µP t − πss∥TV ≡ dS(t) (C.19)

where for a fixed subsets of configuration S ⊆ Ω we have defined µS as πS/πss(S), with

πS(i) ≡
0 if i /∈ S
πss(i) if i ∈ S

(C.20)

Since d(t) ≥ dS(t) and d(t + 1) ≤ d(t), dS(t + 1) ≤ dS(t), we have tmix ≥ tS, with
dS(tS) ≡ 1/4. Therefore, we can find a lower bound by estimating tS and maximing
this time over all the set S such that π(S) ≤ 1/2, to make a connection with the
conductance.

Using the triangle inequality for ∥·∥TV, we have

∥µSP t − πss∥TV + ∥µSP t − µS∥TV ≥ ∥µS − π∥TV (C.21)
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Taking t = tS, the inequality becomes, by definition of tS
1
4 + ∥µSP tS − µS∥TV ≥ ∥µS − π∥TV (C.22)

The term on the right hand side can be estimated as follows

∥µS − π∥TV = 1
2
∑
i∈Ω
|µS − πss(i)|

=
∑
i∈Ω

µS(i)≤π(i)

[π(i)− µS(i)]

=
∑
i∈Sc

π(i) = 1− π(S) ≥ 1
2

(C.23)

The second term on the left hand side of Eq. (C.22) is bounded by the ergodic flow
of S,

∥µSP tS − µS∥TV ≤ tSΦ(S). (C.24)
Physically, this means that the conductance imposes an upper limit to the rate at
which µSP

t drifts away from its initial condition as the Markov chain evolves in time.
To see this consider

∥µSP tS − µS∥TV = ∥
tS−1∑
r=0

µSP
r+1 − µSP r∥TV

≤
tS−1∑
r=0
∥µSP r+1 − µSP r∥TV

≤ tS∥µSP − µS∥TV

(C.25)

where in the last passage we made use of Eq. (C.18).

tS∥µSP − µS∥TV = tS
∑
i∈Ω

µSP (i)≥µS(i)

µSP (i)− µS(i) (C.26)

From the definition of µS in Eq. (C.20), we see that the inequality µSP (i) ≥ µS(i) is
true if and only if i /∈ S. The equation above reduces to

tS∥µSP − µS∥TV = tS
∑
i∈Sc

µSP (i)− µS(i)

= tS
∑
i∈Sc

∑
j∈S

µS(j)P (j, i)− µS(i)

= tS

∑
i∈Sc

∑
j∈S µS(j)P (j, i)
πss(S)

= tSΦ(S).

(C.27)

When passing from the second to the third line, we have used the definition of µS,
and the fact that µS(i) = 0 if i ∈ Sc. We have thus proved Eq. (C.24). The triangle
inequality in Eq. (C.22) thus becomes

tS ≥
1

4Φ(S) (C.28)
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A minimization over S yields the desired result

tmix ≥ sup
S|πss(S)≤1/2

tS ≥ sup
S|πss(S)≤1/2

1
4Φ(S) = 1

4Φ∗ , (C.29)

and we have completed the proof. The constant C in Eq. (C.1) is thus C = 1/4.
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Appendix D

p-spin with Ichiki-Ohzeki dynamics

D1 Dynamical equations for the p-spin evolving under the
IO dynamics

We consider two copies of the spherical p-spin model evolving according to the Ichiki-
Ohzeki (IO) dynamics, for which the equations of motion read

∂tσ
(1)
i = − ∂H

∂σ
(1)
i

+ γ
∂H

∂σ
(2)
i

− µ(1)(t)σ(1)
i + γµ(2)(t)σ(2)

i +
√

2Tξ(1)
i (D.1)

∂tσ
(2)
i = − ∂H

∂σ
(2)
i

− γ ∂H
∂σ

(1)
i

− µ(2)(t)σ(2)
i − γµ(1)(t)σ(1)

i +
√

2Tξ(2)
i (D.2)

where µ(a)(t) are elastic constants that enforce the spherical constraints∑N
i=1

〈(
σ

(a)
i

)2
(t)
〉

=

N for a = 1, 2, ξ(a)
i are independent Gaussian white noises

〈
ξ

(a)
i (t)ξ(b)

j (t′)
〉

= δabδijδ(t−
t′) and the total Hamiltonian of the system H reads

H
[
{σi}(a)

i=1,...,N,a=1,2

]
= −

∑
i1<...<ip

Ji1...ip
∑
a=1,2

σ
(a)
i1 . . . σ

(a)
ip (D.3)

Note that the couplings Ji1...ip have the same realization for both systems, and they are
independently distributed according to a Gaussian distribution of mean 0 and variance
p!

2Np−1 .

We suppose that the systems start from an initial equilibrium condition at a tem-
perature T ≡ β−1, which is kept constant throughout the dynamical evolution. Our
goal is to derive effective dynamical equations of motion for the spins in the two system
by averaging over the disorder. To achieve this, we use standard path integral tech-
niques as carried out in [67] and further detailed in [14] or [56]. The starting point is
the partition function for the dynamics of the composite system in Eq. (D.1) at tem-
perature T . The initial condition for the two subsystems is given by two independent
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realization of the Boltzmann distribution at temperature T . We have therefore

1 ≡ Z =
∫
Dσ0

1
Zeq

e−βH [σ(1)
0 ,σ

(2)
0 ]

×
∫
DσDσ̂ exp

− N∑
i=1

∫ t

0
dτ σ̂(1)

i

(
∂τσ

(1)
i + ∂H

∂σ
(1)
i

− γ ∂H
∂σ

(2)
i

+ µ(1)σ
(1)
i − γµ(2)σ

(2)
i

)

+ σ̂
(2)
i

(
∂τσ

(2)
i + ∂H

∂σ
(2)
i

+ γ
∂H

∂σ
(1)
i

+ µ(2)σ
(2)
i + γµ(1)σ

(2)
i

)
− T

(
σ̂

(1)
i

)2
− T

(
σ̂

(2)
i

)2


(D.4)
with Zeq the static partition function of the system, Zeq ≡

∫
Dσ0e

−βH [σ0]. We are
using a vector notation for the spin variables, σ(t) =

(
σ(1)(t), σ(2)(t)

)T
, the auxiliary

field σ̂(t) =
(
σ̂(1)(t), σ̂(2)(t)

)T
and the initial condition σ0(t) =

(
σ(1)(0), σ(2)(0)

)T
As

noted in [132], since we are using thermalized initial conditions, we must resort to the
replica trick in order to average Z over the disorder:

1
Zeq

= lim
n→0

Zn−1
eq (D.5)

and follow the dynamics of each replica. However, since the initial condition belongs
to the replica symmetric phase, the dynamics of the different replicas are decoupled
and it suffices to follow the behavior of any single one among them. By using notation
of the form

(
σ(a) · σ(b)

)
(t, t′) ≡ ∑N

i=1 σ
(a)
i (t)σ(b)

i (t′), with a and b indices identifying the
two systems, we can write in the thermodynamic limit

Z =
∫
Dσ(0)DσDσ̂ exp

−
N∑
i=1

∫ dτ σ̂(1)
i

(
∂τσ

(1)
i + µ(1)σ

(1)
i − γµ(2)σ

(2)
i

)
− T

(
σ̂

(1)
i

)2

+ σ̂
(2)
i

(
∂τσ

(2)
i + µ(2)σ

(2)
i + γµ(1)σ

(1)
i

)
− T

(
σ̂

(2)
i

)2


+ 1
4Np−1

∫
dt
∫

dt′I1(t, t′) + 1
4TNp−1

∫
dtI2(t)


(D.6)
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With

I1(t, t′) ≡ p
(
σ̂(1) · σ̂(1)

) (
σ(1) · σ(1)

)p−1
+ p(p− 1)

(
iσ̂(1) · σ(1)

) (
σ(1) · σ̂(1)

) (
σ(1) · σ(1)

)p−2

− γ
[
p
(
σ̂(1) · σ̂(1)

) (
σ(1) · σ(2)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(2)

) (
σ(1) · σ̂(1)

) (
σ(1) · σ(2)

)p−2
]

+ p
(
σ̂(1) · σ̂(2)

) (
σ(1) · σ(2)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(2)

) (
σ(1) · σ̂(2)

) (
σ(1) · σ(2)

)p−2

+ γ
[
p
(
σ̂(1) · σ̂(2)

) (
σ(1) · σ(1)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(1)

) (
σ(1) · σ̂(2)

) (
σ(1) · σ(1)

)p−2
]

− γ
[
p
(
σ̂(1) · σ̂(1)

) (
σ(2) · σ(1)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(1)

) (
σ(2) · σ̂(1)

) (
σ(2) · σ(1)

)p−2
]

+ γ2
[
p
(
σ̂(1) · σ̂(1)

) (
σ(2) · σ(2)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(2)

) (
σ(2) · σ̂(1)

) (
σ(2) · σ(2)

)p−2
]

− γ
[
p
(
σ̂(1) · σ̂(2)

) (
σ(2) · σ(2)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(2)

) (
σ(2) · σ̂(2)

) (
σ(2) · σ(2)

)p−2
]

− γ2
[
p
(
σ̂(1) · σ̂(2)

) (
σ(2) · σ(1)

)p−1
+ p(p− 1)

(
σ̂(1) · σ(1)

) (
σ(2) · σ̂(2)

) (
σ(2) · σ(1)

)p−2
]

+ (1↔ 2, γ ↔ −γ)
(D.7)

and
1
2I2(t, 0) ≡ p

(
σ̂(1) · σ(1)

0

) (
σ(1) · σ(1)

0

)p−1
− γp

(
σ̂(1) · σ(1)

0

) (
σ(2) · σ(1)

0

)p−1

+ p
(
σ̂(1) · σ(2)

0

) (
σ(1) · σ(2)

0

)p−1
− γp

(
σ̂(1) · σ(2)

0

) (
σ(2) · σ(2)

0

)p−1

+ (1↔ 2, γ ↔ −γ)

(D.8)

We now exploit the thermodynamic limit N → ∞ through a saddle point evaluation
of the path integral. In order to do so, we introduce a set of dynamical overlaps in the
partition function:

Z =
∫
DQΠa,b=1,2δ

(
NQ

(ab)
1 (t, t′)− σ̂(a) · σ̂(b)

)
δ
(
NQ

(ab)
2 (t, t′)− σ(a) · σ(b)

)
× δ

(
NQ

(ab)
3 (t, t′)− σ̂(a) · σ(b)

)
δ
(
NQ

(ab)
4 (t, t′)− σ(a) · σ̂(b)

)
× δ

(
NQ

(ab)
5 (t)− σ̂(a) · σ(b)

0

)
× δ

(
NQ

(ab)
6 (t)− σ(a) · σ(b)

0

)
× (r.h.s. Eq. (D.6))

=
∫
DP

∫
DQΠa,b=1,2 exp

[
iN

∫
dtdt′

(
P

(ab)
1 (t, t′)Q(ab)

1 − P (ab)
1 (t, t′)σ̂(a) · σ̂(b)

)]
× exp

[
iN

∫
dtdt′

(
P

(ab)
2 Q

(ab)
2 − P (ab)

2 σ(a) · σ(b)
)]

× exp
[
iN

∫
dtdt′

(
P

(ab)
3 (t, t′)Q(ab)

3 − P (ab)
3 σ̂(a) · σ(b)

)]
× exp

[
iN

∫
dtdt′

(
P

(ab)
4 Q

(ab)
4 − P (ab)

4 σ(a) · σ̂(b)
)]

× exp
[
iN

∫
dt
(
P

(ab)
5 Q

(ab)
5 − P (ab)

5 σ̂(a) · σ(b)
0

)]
× exp

[
iN

∫
dt
(
P

(ab)
6 Q

(ab)
6 − P (ab)

6 σ(a) · σ(b)
0

)]
× (r.h.s of Eq. (D.6))

(D.9)
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The dynamical overlaps have a natural interpretation if one introduces the correlation
and the response matrices C(t, t′) and R(t, t′):

Cab(t, t′) ≡ 1
N

∑
i⟨σ

(a)
i (t)σ(b)

i (t′)⟩ (D.10)
Rab(t, t′) ≡ 1

N

∑
i⟨σ

(a)
i (t)σ̂(b)

i (t′)⟩ (D.11)

We therefore see that in the thermodynamic limit the following self consistent relations
hold:



Q
(ab)
2 (t, t′) = Cab(t, t′)

Q
(ab)
3 (t, t′) = Rab(t′, t)

Q
(ab)
4 (t, t′) = Rab(t, t′)

Q
(ab)
5 (t) = Cab(t, 0)

Q
(ab)
6 (t) = Rab(t, 0)

(D.12)

Note that Q
(ab)
3 (t, t′) = Q

(ba)
4 (t′, t). Moreover, we claim that, as in the standard

case [241], Q(ab)
1 = 0. The saddle point equations are obtained by differentiating the

argument of the exponentials in Eq. (D.6) with respect to the set of dynamical overlaps
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Q
(ab)
i and they read:

iP
(11)
1 = p

4Q
(11)p−1
2 − γ p4

(
Q

(12)p−1
2 +Q

(21)p−1
2

)
+ γ2 p

4Q
(22)p−1
2

iP
(11)
2 = 0

iP
(11)
3 = p

4(p− 1)Q(11)
4 Q

(11)p−2
2 + γ p4(p− 1)Q(12)

4 Q
(11)p−2
2

−γ p4(p− 1)Q(21)
4 Q

(21)p−2
2 − γ2 p

4(p− 1)Q(11)
4 Q

(21)p−2
2

iP
(11)
4 = p

4(p− 1)Q(11)
3 Q

(11)p−2
2 + γ p4(p− 1)Q(21)

3 Q
(11)p−2
2

−γ p4(p− 1)Q(12)
3 Q

(12)p−2
2 − γ2 p

4(p− 1)Q(11)
3 Q

(12)p−2
2

iP
(11)
5 = p

2TQ
(11)
5 − γ p

2TQ
(21)
5

iP
(11)
6 = 0

iP
(12)
1 = p

4Q
(12)p−1
2 − γ p4

(
Q

(22)p−1
2 −Q(11)p−1

2

)
− γ2 p

4Q
(22)p−1
2

iP
(12)
2 = 0

iP
(12)
3 = p

4(p− 1)Q(12)
4 Q

(12)p−2
2 − γ p4(p− 1)Q(11)

4 Q
(12)p−2
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γ p4(p− 1)Q(22)
4 Q

(22)p−2
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4(p− 1)Q(21)
4 Q

(22)p−2
2

iP
(12)
4 = p

4(p− 1)Q(12)
3 Q

(12)p−2
2 + γ p4(p− 1)Q(11)

3 Q
(11)p−2
2

+γ p4(p− 1)Q(22)
3 Q

(12)p−2
2 + γ2 p

4(p− 1)Q(21)
3 Q

(11)p−2
2

iP
(12)
5 = p

2TQ
(12)
5 − γ p

2TQ
(22)
5

iP
(12)
6 = 0

iP
(21)
1 = p

4Q
(21)p−1
2 − γ p4

(
Q

(11)p−1
2 −Q(22)p−1

2
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− γ2 p

4Q
(12)p−1
2

iP
(21)
2 = 0

iP
(21)
3 = p

4(p− 1)Q(21)
4 Q

(21)p−2
2 + γ p4(p− 1)Q(11)

4 Q
(11)p−2
2

+γ p4(p− 1)Q(22)
4 Q

(21)p−2
2 + γ2 p

4(p− 1)Q(12)
4 Q

(11)p−2
2

iP
(21)
4 = p

4(p− 1)Q(21)
3 Q

(21)p−2
2 − γ p4(p− 1)Q(11)

3 Q
(21)p−2
2

−γ p4(p− 1)Q(22)
3 Q

(12)p−2
2 + γ2 p

4(p− 1)Q(12)
3 Q

(22)p−2
2

iP
(21)
5 = p

2TQ
(21)
5 + γ p

2TQ
(11)
5

iP
(21)
6 = 0

iP
(22)
1 = p

4Q
(22)p−1
2 + γ p4

(
Q

(12)p−1
2 +Q

(21)p−1
2

)
+ γ2 p

4Q
(11)p−1
2

iP
(22)
2 = 0

iP
(22)
3 = p

4(p− 1)Q(22)
4 Q

(22)p−2
2 − γ p4(p− 1)Q(21)

4 Q
(22)p−2
2

+γ p4(p− 1)Q(12)
4 Q

(12)p−2
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4(p− 1)Q(22)
4 Q

(12)p−2
2

iP
(22)
4 = p

4(p− 1)Q(22)
3 Q

(22)p−2
2 − γ p4(p− 1)Q(12)

3 Q
(22)p−2
2

+γ p4(p− 1)Q(21)
3 Q

(21)p−2
2 − γ2 p

4(p− 1)Q(22)
3 Q

(21)p−2
2

iP
(22)
5 = p

2TQ
(22)
5 + γ p

2TQ
(12)
5

iP
(22)
6 = 0

(D.13)

189



Chapter D

Note that iP2 = iP6 = 0 because Q1 = 0 and because of causality, which implies that
Q

(ab)
3 (t, t′)Q(ab)

4 (t, t′) = 0. Substitution of the saddle point expressions of Eq. (D.13) in
Eq. (D.9), together with Eq. (D.12) yields the effective dynamical equations for the
spins of the system. Using a vector notation, σ(t) =

[
σ(1) σ(2)

]T
, we obtain

∂tσ(t) = − (12 + γA)·µ(t)·σ(t)+
∫ t

0
dτMR(t, τ)·σ(τ)+ 1

T
(12 + γA)·C0(p, t)·σ(0)+Ξ(t)

(D.14)
where µab(t) ≡ δabµ

(a)(t), and the correlations of the noise Ξ(t) are

⟨Ξ(t)Ξ(t′)⟩ = 2Tδ(t− t′)12 + D(t, t′) (D.15)

while the expression for the memory kernel MR(t, t′), the noise correlations D(t, t′)
and the coupling with the initial conditions C0(t, 0) are the following:

MR(t, τ) = p(p− 1)
2

×
[

C
p−2
11 (R11 + γR12) − γC

p−2
21 (R21 + γR22) C

p−2
12 (R12 − γR11) − γC

p−2
22 (R22 − γR21)

C
p−2
21 (R21 + γR22) + γC

p−2
11 (R11 + γR12) C

p−2
22 (R22 − γR21) + γC

p−2
12 (R12 − γR11)

]
(D.16)

D(t, t′) ≡ (12 + γA) ·C0(p, t) ·
(
12 + γAT

)
(D.17)

C0(p, t, 0)ij = p

2C
p−1
ij (t, 0) (D.18)

From Eq. (D.14) by using the definition (D.10) and the equalities

Rab(t, t′) =
〈
δσ(a)(t)
δξ(b)(t′)

〉
(D.19)

⟨ξ(a)(t)σ(b)(t′)⟩ = 2TRba(t′, t) +
∫
dτ
[
D(t, τ) ·RT(t′, τ)

]
ab

(D.20)

we obtain

∂tR(t, t′) = − (12 + γA) · µ(t) ·R(t, t′) +
∫ t

t′
dτMR(t, τ) ·R(τ, t′) + δ(t− t′)12

(D.21)

∂tC(t, t′) = − (12 + γA) · µ(t) ·C(t, t′) +
∫ t

0
dτMR(t, τ) ·C(τ, t′) + 2TRT(t′, t)

(D.22)

+
∫ t′

0
dτD(t, τ) ·RT(t′, τ) + 1

T
(12 + γA) ·C0(p, t) ·C(0, t′)

By imposing the spherical constraint ∑N
i=1

〈(
σ

(a)
i

)2
(t)
〉

= N for a = 1, 2 one can find a
self-consistent expression for the restoring forces µ(t). If we denote the diagonal part of
a matrix by Diag(A)ab ≡ δabAab the spherical constraint condition reads Diag(C(t, t)) =
1. By differentiating with respect to t we get

lim
t′→t

Diag (∂tC(t, t′) + ∂t′C(t, t′)) = lim
t′→t

Diag
(
∂tC(t, t′) + ∂t′CT(t′, t)

)
= 0 (D.23)
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which leads to

µ(t) = Diag
T12 +

∫ t

0
dτM(t, τ) ·CT(t, τ) +

∫ t

0
dτD(t, τ) ·RT(t, τ)

+ 1
T

(12 + γA) ·C0(p, t) ·CT(t, 0)
 (D.24)

Since the dynamics of the system starts within the steady state, we assume that time
translation invariance holds: C(t, t′) ≡ C(t− t′) and R(t, t′) ≡ R(t− t′) The equations
of motion for the response and correlation matrices therefore read, when taking t′ = 0

∂tR(t) = − (12 + γA) · µ(t) ·R(t) +
∫ t

t′
dτMR(t− τ) ·R(τ) + δ(t)12 (D.25)

∂tC(t) = − (12 + γA) · µ(t) ·C(t) +
∫ t

0
dτMR(t− τ) ·C(τ) + 1

T
(12 + γA) ·C0(p, t)

(D.26)

µ(t) = Diag
T12 +

∫ t

0
dτM(t− τ) ·CT(t− τ) +

∫ t

0
dτD(t− τ) ·RT(t− τ)

+ 1
T

(12 + γA) ·C0(p, t) ·CT(t)


(D.27)
For numerical purposes it is more convenient to work with the integrated response
matrix F(t, t′) [155], defined by

Fab(t, t′) ≡ −
∫ t

t′
dτRab(t, τ) (D.28)

since it has a smoother relaxation than R(t, t′). The equations of motion in the time
translation invariant regime are

∂tF(t) = −12 − (12 + γA) · µ(t) · F(t) +
∫ t

t′
dτMF(t− τ) · F(τ) (D.29)

∂tC(t) = − (12 + γA) · µ(t) ·C(t) +
∫ t

0
dτMF(t− τ) ·C(τ) + 1

T
(12 + γA) ·C0(p, t)

(D.30)

µ(t) = Diag
T12 +

∫ t

0
dτMF(t− τ) ·CT(t− τ) +

∫ t

0
dτD(t− τ) · ∂τFT(t− τ)

+ 1
T

(12 + γA) ·C0(p, t) ·CT(t)


(D.31)
and the memory kernel MF(t) that reads

MF(t− τ) ≡ −p(p− 1)
2 ×[

C
p−2
11 (∂τ F11 + γ∂τ F12) − γC

p−2
21 (∂τ F21 + γ∂τ F22) C

p−2
12 (∂τ F12 − γ∂τ F11) − γC

p−2
22 (∂τ F22 − γ∂τ F21)

C
p−2
21 (∂τ F21 + γ∂τ F22) + γC

p−2
11 (∂τ F11 + γ∂τ F12) C

p−2
22 (∂τ F22 − γ∂τ F21) + γC

p−2
12 (∂τ F12 − γ∂τ F11)

]
(D.32)
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the companion initial conditions are C(0) ≡ 12, F(0) = 0. Together with Eq. (D.14),
these equations correspond to Eqs. (3.5, 3.6, 3.7, 3.8) presented in the main text.

In the following section we provide the reader with some details on the algorithm
implemented to integrate the dynamical equations.

D2 Numerical Integration of the dynamical equations

We present here the integration scheme adopted to numerically solve the dynamical
equations of motion, Eqs. (D.29, D.30, D.31). The basic idea for the algorithm was
first given in [102] in the context of the mode coupling equations. It was then applied
to the aging of the p−spin model in [155] and generalised in [27] for the case of non
stationary systems. A pedagogical description of the algorithm can be found in [92].

To integrate Eqs. (D.29, D.30, D.31), we take a grid ofM points with a discretisation
step ∆t, so that any function f(t) can be discretised as fk ≡ f(tk) with tk ≡ k∆t.
Suppose that we know the first n value of the correlation and the integrated response
along the discretized line and that we want to know their value at the step n+ 1. By
resorting to finite difference approximations, we can obtain a set of non-linear equation
for the variable Vi ≡

[
Ci Fi

]
of the form

Vn+1 = NL (V0,V1, ...,Vn,Vn+1) (D.33)

where NL is a generic nonlinear operator. This set of equation can be solved iteratively
starting from the initial condition Vn+1 = Vn. Once convergence is achieved, one can
move to the next point along the discretised line. This is the propagation step.

Once all the values of C and F have been obtained along the grid, one performs
a decimation and a rescaling to compress the information obtained and reach longer
times. Half of the points are discarded by performing the substitution V2i → Vi

for i = 0, ...,M − 1 and the time step is rescaled by a factor two, ∆t → 2∆t. The
propagation step is then repeated starting from the point n+ 1 = M

2 . Large times can
be quickly achieved by iterating these two steps.

The finite difference approximations that we adopt are the following. For the left
hand side of Eqs. (D.29, D.30) the time derivative of a function at step k + 1, ∂tfk+1

can be approximated as

∂tfk+1 = 1
2∆t (3fk+1 − 4fk + fk−1) +O(∆t2) (D.34)

while the integrals on the right hand side have the general form

In+1 ≡
∫ tn+1

0
dτA(t− τ)∂τB(t− τ)C(τ) (D.35)

Jn+1 ≡
∫ tn+1

0
dτA(t− τ)∂τB(t− τ)C(τ) (D.36)
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and they can be approximated as

In+1 =
n∑
j=0

1
4 (An+1−j + An−j) (Bn−j −Bn+1−j) (Cj + Cj+1) +O(∆t2) (D.37)

Jn+1 =
n∑
j=0

1
4 (An+1−j + An−j) (Bn−j −Bn+1−j) (Cn+1−j + Cn−j) +O(∆t2) (D.38)

(D.39)

For the results presented in the main text we have adopted a grid of M = 1024 points
and an initial timestep of ∆t = 10−10.

D3 aFDT for the IO dynamics of the p−spin

We make the following ansatz concerning the form of the violation of the FDT for the
Twisted Dynamics of the p−spin:

1
T

[C(t)−C(0)] = F(t) · (12 + γA) (D.40)

that is, an analogous form of the FDT relation holds if one looks at the proper combi-
nation of response functions. We call this the aFDT relation. In this section we will
show that this relation is indeed satisfied by Eqs. (D.29, D.30, D.31). The strategy
of the proof is the following: starting from Eqs. (D.30, D.31) and the aFDT we will
obtain Eq. (D.29). To do so, we first rewrite Eq. (D.40) in a differential form:

1
T
∂tC(t) = ∂tF(t) · (12 + γA) (D.41)

using Eq. (D.41) we can rewrite the memory kernel MF in a simpler form:

MF(t− τ) = 1
T

(12 + γA) · ∂τC0(t− τ) (D.42)

We now proceed to compute the left hand side of Eq. (D.41) using Eq. (D.26):
1
T
∂tC(t) = − 1

T
(12 + γA) · µ(t) ·C(t) + 1

T

∫ t

0
dτMF(t− τ) ·C(τ)

+ 1
T 2 (12 + γA) ·C0(t)

= − (12 + γA) ·
( 1
T

12 + F(t) · (12 + γA)
)

+ 1
T

∫ t

0
dτMF(t− τ) ·C(τ)

+ 1
T 2 (12 + γA) ·C0(t)

(D.43)

µ(t) = Diag
T12 +

∫ t

0
dτMF(t− τ) ·CT(t− τ) +

∫ t

0
dτD(t− τ) · ∂τFT(t− τ)

+ 1
T

(12 + γA) ·C0(p− 1, t) ·CT(t)


(D.44)
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to evaluate the time integral, we can use Eq. (D.42), integration by parts, the aFDT
relation and the boundary condition C(0) = 12, F(0) = 0 to obtain

1
T

∫ t

0
dτMF(t− τ) ·C(τ) = 1

T 2

(
p

212 −C0(t)
)

+
∫ t

0
dτMF(t− τ) · F(τ) · (12 + γA)

(D.45)∫ t

0
dτD(t− τ) · ∂τFT(t− τ) = 1

2T (12 + γA) ·
∫ t

0
dτC0 · ∂τCT(τ) (D.46)∫ t

0
dτMF(t− τ) ·CT(t− τ) = 1

T

[
p

212 −C0(t) ·CT(t)− 1
T

∫ t

0
dτC0(t− τ) · ∂τCT(τ)

]
(D.47)

So that µ reads after simplifying and taking the diagonal part:

µ(t) =
(
T + p

2T

)
12 ≡ µ∞ (D.48)

putting everything back in Eq. (D.43) and simplifying we get that

1
T
∂tC(t) = ∂tF(t) · (12 + γA) (D.49)

with ∂tF(t) given by Eq. (D.29), and the proof is completed.
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Appendix E

Chiral active baths and symmetric
tracers

Over the course of my thesis, due to the expertise developed in the area of nonreciprocal
forces and projection operator methods, I have been involved in a research project in
chiral active matter. This Appendix presents the topic in a form close to the eventual
submission. This work was done in collaboration with Cory Hargus, Julien Tailleur,
and Frédéric van Wijland.

Chiral active matter [175] refers to systems of particles that harness energy from
the environment and convert it in a form of biased self-propulsion, that breaks the
inversion symmetry of the system. It has received much interest in recent years, as a
framework to describe a variety of systems in biology and synthetic soft matter, from
sperm cells [228] to asymmetrically shaped self phoretic colloids [260].

Here we ask ourselves how a bath of chiral active matter affects the dynamics of an
embedded passive tracer. This applies to its transport properties and possible ratchet
effects. In the microscopic world, where fluctuations play an important role, the min-
imal theoretical ingredients necessary to build a ratchet are well-known: irreversible
dynamics coupled to a spatially asymmetric shape or potential can generate directed
motion, from which work can be extracted [88, 183]. In the last two decades, micro-
scopic ratchets have been devised using nonequilibrium baths [52, 53, 114] and probes
of various shapes. Even more recently, active baths have been used to construct micro-
scopic engines [167, 259]. One spectacular realization is that of a gear with asymmetric
(chiral) teeth, which rotates when placed in a bacterial bath [80, 9].

Conversely, even a symmetric object may become a rotational ratchet when placed
in a chiral active bath, composed of self-driven particles with a propensity to turn
in a particular direction [174]. In this case, the bath itself contains both ingredients,
breaking time-reversal and mirror symmetries. Indeed, the breaking of time-reversal
and mirror symmetries in the microscopic dynamics permits exotic transport properties
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otherwise prohibited by Onsager’s reciprocal relations, such as odd transport phenom-
ena [13, 123, 126, 223], which have been previously seen in this thesis as a byproduct
of transverse forces. In the presence of multiple tracers interacting with such a kind of
bath, exotic forms of clustering formation and rotation [120] have been observed.

E1 Model

We consider an extended rigid tracer of arbitrary shape and typical size ℓ evolving under
Hamiltonian dynamics and interacting with a chiral active bath in two dimensions. The
tracer has mass m and moment of inertia I. Its state is characterized by its position
R, momentum P, orientation Θ and angular momentum L. The equations of motion
of the tracer read

Ṙ = 1
m

P,

Ṗ = Fbath

Θ̇ = 1
I
L,

L̇ = Γbath

(E.1)

where Fbath and Γbath are the total force and torque on the object due to pairwise
interactions between elementary constituents of the tracer with the bath particles.
The bath is composed chiral active Brownian particles (cABPs) [179], whose equations
of motion are

ζ ṙi = Ftracer,i + f0ui +
√

2ζDtηi,

θ̇i = ω0 +
√

2Drξi
(E.2)

where Fint,i accounts for pairwise interactions between bath particles, the force on bath
particle i due to the tracer is Ftracer,i, and where f0 is the active propulsion force oriented
along the director ui. Pairwise interactions are assumed to be reciprocal, i.e. satisfying∑
i Ftracer,i = −Fbath. The active bath described by Eq. (E.2) displays two microscopic

active timescales: the persistence length ℓp := f0
Drζ

and the gyroradius ℓg := f0
ω0ζ

.

E2 Main results

We first present qualitative results coming from Molecular Dynamics simulations of
Eq. (E.1) and Eq. (E.2) obtained by C. Hargus. Fig. E.1 illustrates three differently
shaped objects which, when placed in a bath of chiral active Brownian particles, exhibit
qualitative differences in their motion. Namely, an isotropic disk inherits from the bath
particles an emergent chiral random motion (Fig. E.1(a)), imbuing the object with odd
diffusivity [126], as previously noted in [174]. This is quantified by plotting the antisym-
metric component of the velocity autocorrelations as a function of time (Fig. E.1(d)).
When isotropy is broken, but invariance by central symmetry is preserved, for example
in an elongated rod-like object, the object will generically experience a torque from the
chiral active particles causing it to rotate systematically in one direction (Fig. E.1(b))
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Figure E.1: Odd dynamics and ratchet currents of differently-shaped passive objects
in a bath of cABPs. (a) A passive disc (blue) inherits chiral random motion of the
opposite sign of the bath particles (yellow) through collisions. (b) This results in
odd diffusion, manifesting in antisymmetric velocity correlations (solid line) which are
odd under time-reversal (dashed line). (c) An immobilized rod breaks the isotropy of
the bath, resulting in asymmetric accumulation of cABPs driving a net torque ⟨Γ⟩b.
(d) For a mobile rod, this torque is balanced in steady state by the angular friction,
resulting in a constant angular velocity. Translational and rotational dynamics are
decoupled due to central symmetry. (e) A passive wedge further breaks this central
symmetry, behaving as both a rotational and translational ratchet. (f) Translation-
rotation coupling and ratchet currents are visible in the time correlation of Ω and v∥.
The bottom row shows simulation results for ℓp = 10 and ℓg = 10. . This figure was
realised by Cory Hargus.
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as its nonzero angular velocity shows (Fig. E.1(e)). When the rod is deformed into a
wedge, thus suppressing any rotational invariance and breaking one of its symmetry
axes, the object effectively becomes an actively-driven chiral particle itself (Fig. E.1(c)),
and the combination of actively-driven translations and rotations leads to ballistic-like
motion on the timescale of active particle reorientation, and enhanced odd diffusion on
long timescales (Fig. E.1(f)). We complement these numerical results with an analyti-
cal approach in which we coarsen out the bath degrees of freedom. This simplification
comes at the cost of an adiabatic approximation.

In the spirit of Van Kampen [250], we shall assume that the bath degrees of free-
dom evolve over much shorter time scales than those of the tracer. In this adiabatic
approximation, the structure of the bath is completely determined by the instanta-
neous configuration of the tracer. The implementation of the adiabatic approximation
is described in deeper detail in the next sections, the outcome of which is the following
Langevin equation for the tracer[

Ṗ
L̇

]
=
[
⟨F⟩b
⟨Γ⟩b

]
−
[
ζPP ζPL
ζLP ζLL

]
︸ ︷︷ ︸

ζ

[
m−1P
I−1L

]
+
[
ξP (t)
ξL(t)

]
︸ ︷︷ ︸

ξ

.
(E.3)

Upon adiabatic elimination of the active bath degrees of freedom, three effects are
produced on the tracer: a constant drift, an instantaneous friction ζ and a Markovian
noise ξ. The translational and rotational degrees of freedom of the tracer, which are
now coupled one with each other, are thus directly affected.

These equations feature a collection of nine friction coefficients ζ and of three white
Gaussian noises ξ whose correlations are characterized by nine diffusion constants λ,

⟨ξ(t)⊗ ξ(t′)⟩ = 2λδ(t− t′) (E.4)

Depending on the shape of the tracer, the friction and noise may depend on the in-
stantaneous tracer orientation Θ except, due to the bath isotropy implied by Eq. (E.2),
ζLL and λLL, while translation invariance prohibits dependence on R and P.

The outcome of our theoretical procedure is to provide expressions for ζ and λ

in terms of steady-state averages over the bath degrees of freedom at fixed tracer
coordinates, as written out in Eqs. (E.5) and (E.6). The friction matrix ζ reads

ζ =
∫ +∞

0
dτ
[
⟨δF(τ)⊗∇R log ρb(0)⟩b ⟨δF(τ)∂θ log ρb(0)⟩b
⟨δΓ(τ)∇T

R log ρb(0)⟩b ⟨δΓ(τ)∂θ log ρb(0)⟩b

]
(E.5)

with δF = F− ⟨F⟩b, δΓ = Γ− ⟨Γ⟩b the fluctuation of the active bath forces acting on
the tracer. The matrix λ encodes the noise correlations, and it is given by

λ =
∫ +∞

0
dτ
[
⟨δF(τ)⊗ δF(0)⟩b ⟨δF(τ)δΓ(0)⟩b
⟨δΓ(τ)δFT (0)⟩b ⟨δΓ(τ)δΓ(0)⟩b

]
. (E.6)
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Equation (E.3) is the most general description of the tracer dynamics within the adi-
abatic approximation. As highlighted in Figure E.1, in addition to being subjected to
a translational drift, the tracer generically feels a constant torque as well. Due to the
chirality of the bath itself, the object need not be chiral to experience a net torque.
We now specialize Eq. (E.3) to the various shapes of Fig. E.1.

E2.1 Swirling disk

We start with a circular tracer, which has only translational degrees of freedom. Due
to rotational symmetry, we have ⟨F⟩b = 0, and Eq.(E.3) reduces to

Ṗ = − 1
m
ζPP ·P + ξP (t). (E.7)

When ω0 = 0 the bath is made by achiral ABPs, which, together with the isotropy of
the system imposes ζ = ζ∥1, λ = λ∥1 and we recover the result of [240]. However, when
ω0 ̸= 0, the friction and noise matrices are no longer constrained to be diagonal. The
isotropy of the system therefore imposes ζPP = ζ∥1+ ζ⊥A, λ = λ∥1+ λ⊥A, with A =[
0 −1
1 0

]
. The physical consequence of such a structure of the friction and noise matrices

is the emergence of odd diffusion for the passive disk. Such an effect is quantified by
a finite odd diffusivity [126] D⊥ = 1

2m2

∫+∞
0 dτ⟨P(τ) · AP(0)⟩ =

∫+∞
0 ⟨vy(t)vx(0)⟩, as

shown in Fig. E.1(d). The dynamical evolution of Eq. (E.7) is irreversible because upon
time-reversal ω0 remains unchanged (unlike the magnetic field in the Lorentz force for
a charged particle [205]) but observables that are even in ω0 will be consistent with
Boltzmann statistics. We can therefore introduce an effective temperature Teff = λ∥/ζ∥,
such that ⟨P2⟩ = 2mTeff. This leads to the following expression for the odd diffusion
constant

D⊥ = Teff
ζ⊥

ζ2
∥ + ζ2

⊥
. (E.8)

Interestingly, one can show that in this adiabatic context, the odd mobility of the
tracer, defined as µ⊥ = limt→∞

δṘy

δfx
when a constant force f = fex is applied on the

tracer obeys the effective Einstein relation µ⊥ = T−1
eff D⊥.

E2.2 Spinning rod

To pinpoint the effects of the chiral bath upon the orientational degree of freedom,
we consider the case of an anisotropic, achiral tracer, such as a rod. Due to the
anisotropy of the tracer and the chirality of the bath, we expect the average torque
⟨Γ⟩b to be nonzero. This is because two particles hitting either side of the rod at
the same location will experience asymmetric fates as the particles will slide along

199



Chapter E

the obstacle according to their chirality. This creates a heterogeneous density profile
and a net torque. This was indeed observed in [55] for a chiral active particle in an
anisotropic confining potential. Due to the twofold rotational symmetry of the rod,
Eqs. (E.5) and (E.6) show that the off-diagonal elements of λ and ζ coupling rotation
and translational degrees of freedom must vanish. Thus the translation motion of the
rod is odd-diffusive, just as in the previous case of the disk, while rotation is now
present and described by

L̇ = ⟨Γ⟩b −
ζLL
I
L+ ξL(t). (E.9)

In the steady state, we thus expect the tracer to spin with a constant average angular
velocity Ω given by

Ω = ⟨Γ⟩b
ζLL

, (E.10)

as shown in Fig. E.1(e) or in [174]. The range of validity of the adiabatic limit, and
of the accompanying effective Green-Kubo relations, is much more subtle than for the
disk. In the presence of a constant drift, another time scale Ω−1 controls the motion
of the tracer. For the adiabatic regime to hold, we must a posteriori verify that this
emergent time scale is larger than D−1

r and ω−1
0 . This is a consequence of the transport

coefficients coupling rotation and translation vanishing due to central symmetry of the
rod: ⟨Γ(t)Fi(0)⟩ω0 = ⟨Γ(0)Fi(t)⟩−ω0 = 0. This decoupling is warranted for the rod
— which can be rotated into itself by a rotation of π — as for any object exhibiting
central symmetry.

E2.3 Steering wedge

Finally we consider the case of a wedge, which exhibits no central symmetry. All the
entries in λ and ζ have to be considered, because rotational and translational dynam-
ics are now coupled. However, due to the mirror symmetry of the wedge, ζ exhibits
only five independent elements. The wedge behaves as both a rotational and trans-
lational ratchet. The translational drift is a function of the wedge orientation only,
⟨F⟩b = ⟨F⟩b(Θ). The tracer itself can be pictured as an effective chiral active Brownian
particle, where its self-propulsion velocity is determined by its instantaneous spinning
orientation. While, in the adiabatic approximation, generalized frictions and diffusiv-
ities sometimes appear to be connected by an effective temperature, in general their
relationship may be more complex, and this calls for further numerical simulations.

In the next Section, we derive, within the adiabatic approximation, Eq. (E.3).
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E3 Effective Langevin equation for the tracer

E3.1 Setting up the stage

In this Section, we derive the effective underdamped Langevin equation of motion for
the tracer in the adiabatic limit, Eq. (E.3) of the main text. We consider a rigid tracer
of arbitrary shape, with mass m and momentum of inertia I, interacting with a bath
of chiral active particles. Our starting point are the equation of motion of the tracer
and the active bath, which are Eqs. (E.1) and (E.2) of the main text.

The probability density for the full system ρ(R,P,Θ, L, rN , uN) evolves according
to the Fokker-Planck equation

∂tρ = (LT + Lbath) ρ (E.11)

where LT and LB are respectively the evolution operator acting on the tracer and the
bath degrees of freedom:

LT = −P
m
·∇R − F ·∇P −

L

I
∂Θ − Γbath∂L

LB =
∑
i

1
ζ
∇ri
· [−Ftracer,i − f0ui +Dt∇ri

] + ∂θi
[−ω0 +Dr∂θi

].
(E.12)

To implement the adiabatic approximation, we introduce a dimensionless parameter

h ≡
√

ϵ

mσ2 τR,bath, (E.13)

where σ and ϵ are the strength and length scale of the interaction potential between
the bath particles and the tracer, and

τR,bath ≡
ℓ2

D∥,bath
(E.14)

is the typical relaxation time of the bath, withD∥,bath the longitudinal diffusion constant
of the cABPs given that the tracer is fixed at a given position and orientation. The
adiabatic limit is obtained when the mass of the tracer is large enough, so that h≪ 1.
We then introduce a rescaled time t∗h ≡ t, a rescaled mass m∗h−2 ≡ m, a rescaled
momentum P∗h−1 ≡ P, a rescaled angular momentum L∗h−1 ≡ L, and a rescaled
moment of inertia I∗ = h−2I. Using these rescaled variables, Eq. (E.11) becomes

∂t∗ρ =
(
L∗

T + 1
h
Lbath

)
ρ (E.15)

with LT = −P∗

m∗ ·∇∗
R−F ·∇P∗ − L∗

I∗ ∂Θ−Γbath∂L∗ . To lighten up the notation, we drop
the ∗ symbol in what follows.
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E3.2 Projection operator formalism

In this Section we implement the projection operator formalism, to integrate out the
degrees of freedom of the active chiral bath. The idea is to introduce an operator P
that project in the space orthogonal to the evolution of the chiral bath, i.e. such that

PLbath = LbathP = 0. (E.16)

We also require the idempotent property PP = P , which defines a projection operator.
Our choice for P is

P . . . = ρbath({rN , θN}|R,P,Θ, L)
∫

dr′Ndθ′N . . . (E.17)

where ρbath({rN , θN}|R,P,Θ, L) is the steady state distribution of the active chiral
bath, when the degrees of freedom of the tracer are held fixed. It satisfies the partial
differential equation

Lbathρbath = 0. (E.18)

The idea behind this choice of P is that at a given time in the evolution of the tracer,
the bath relaxes instantaneously to its steady state distribution, and the tracer degrees
of freedom are effectively frozen. The space over which P projects is thus tailored to
capture this kind of dynamics with widely separated timescales.

The action of P on ρ induces the definition of a tracer density distribution, ρT(R,P,Θ, L, t):

Pρ(R,P, L,Θ, rN , θN , t) = ρbath({rN , θN}|R,P,Θ, L)
∫

dr′Ndθ′Nρ(R,P, rN , θN , t)

≡ ρbath({rN , θN}|R,P,Θ, L)ρT(R,P,Θ, L, t).
(E.19)

Our goal is to obtain an equation of motion for the tracer density distribution, ρT.
We introduce a projection operator Q ≡ 1−P orthogonal to P and, Using Eq. (E.11)
and Eq. (E.16) we get

∂tPρ = PLTPρ+ PLTQρ

∂tQρ = QLTPρ+QLTQρ+ 1
h
QLbathQρ.

(E.20)

We have thus formally decoupled the evolution of ρ into two parts, one belonging to
the space projected over by P , and the other belonging to the orthogonal space. To
proceed further, we will exploit the separation between the timescale for the evolution
of the tracer and the one for the evolution of the bath, implemented via the small
parameter h.
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E3.3 Adiabatic approximation

We solve the equation for Qρ in Eq. (E.20) by expanding in powers of h:

Qρ = q0 + hq1 +O(h2). (E.21)

The equation for q0 reads, from Eq. (E.20),

QLbathq0 = Lbathq0 = 0 (E.22)

This equation is solved for q0 = ρbath or q0 = 0.The former can be excluded because by
definition Pq0 = 0, while Pρbath = ρbath. We thus conclude that q0 = 0.

To first order in h, Eq. (E.20) becomes

QLbathq1 +QLTPρ = 0, (E.23)

which admits the formal solution

q1 = Q
(∫ +∞

0
dseLbaths

)
QLTPρ, (E.24)

as can indeed be verified:

QLbathq1 = QLbathQ
(∫ +∞

0
dseLbaths

)
QLTPρ

= QLbath

(∫ +∞

0
dseLbaths

)
QLTPρ

= Q
(∫ +∞

0
ds

d

ds
eLbaths

)
QLTPρ

= −QLTPρ.

(E.25)

We thus have, for Qρ,

Qρ = hQ
(∫ +∞

0
dseLbaths

)
QLTPρ+O(h2). (E.26)

Substituting the above expression in the first line of Eq. (E.20) and neglecting higher
orders in h we obtain

∂tPρ = ρbath∂tρT ≈ PLTPρ+ PLTQ
(∫ +∞

0
dse

1
h

Lbaths
)
QLTPρ. (E.27)

This is the formal evolution equation for ρT in the adiabatic limit. We now proceed to
the computation of its different terms.
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E3.4 Explicit computation

The first term in Eq. (E.27) reads:

PLTPρ = −P
(

F ·∇P + 1
m

P ·∇R + 1
I
L∂Θ + Γ∂L

)
ρTρbath

= −Pρbath

F ·∇P + 1
m

P · ((∇R log ρbath) + ∇R)

+ Γ∂L + 1
I
L [(∂Θ log ρbath) + ∂Θ]

ρT

= −ρbath

[
⟨F⟩B ·∇P + 1

m
P ·∇R + ⟨Γ⟩B ∂L + 1

I
L∂Θ

]
ρT

(E.28)

where
⟨. . .⟩b ≡

∫
drNdθN . . . ρbath({rN , θN}|R,P,Θ, L) (E.29)

is an average over the steady state distribution of the active bath when the tracer
degrees of freedom are held fixed. To keep the notation light, we omitted the arguments
of the function, but it should be remembered that ρT and ⟨. . .⟩b depends only on the
tracer degrees of freedom. When passing from the second to the third line of Eq. (E.28),
we used the fact that

⟨[∇R log ρbath]⟩b = ∇R ⟨1⟩b = 0 (E.30)

and that the same is true for ⟨∂Θ log ρbath⟩b. Due to the anisotropy of the tracer and
the chirality of the bath, we admit that a net nonzero average force and torque can be
exerted on the tracer, ⟨Fbath⟩b ̸= 0, ⟨Γbath⟩b ̸= 0.

We compute separately different components of the second term in the r.h.s. of
Eq. (E.27). The first one is

QLTPρ = −ρbath

(Fbath − ⟨Fbath⟩b) ·∇P + 1
m

P · (∇R log ρbath)

+ (Γbath − ⟨Γbath⟩b) ∂L + 1
I
L (∂Θ log ρbath)

ρT

≡ −ρbath

δFbath ·∇P + 1
m

P · (∇R log ρbath)

+ δΓbath∂L + 1
I

(∂Θ log ρbath)
ρT

(E.31)

where we defined the fluctuations of the force and the torque exerted from the bath to
the tracer, δFbath ≡ Fbath − ⟨Fbath⟩b, δΓbath ≡ Γbath − ⟨Γbath⟩b.
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Using Eq. (E.31) we can compute

PLTQ
(∫ +∞

0
dse 1

h
Lbaths

)
QLTPρ = PLT

(∫ +∞

0
dse 1

h
Lbaths

)
QLTPρ

= ρbath

∫
drNdθNLT

(∫ +∞

0
dse

1
h

Lbaths
)
QLTPρ

= ρbath

∫
drNdθN

[
F ·∇P + 1

m
P ·∇R + 1

I
L∂Θ + Γ∂L

] (∫ +∞

0
dse

1
h

Lbaths
)
ρbath

×

δFbath ·∇P + 1
m

P · (∇R log ρbath) + δΓbath∂L + 1
I

(∂Θ log ρbath)
ρT

= ρbath

∫
drNdθN

[
F ·∇P + 1

m
P ·∇R + 1

I
L∂Θ + Γ∂L

]
ρbath

(∫ +∞

0
dse 1

h
Lbaths

)

×

δFbath ·∇P + 1
m

P · (∇R log ρbath) + δΓbath∂L + 1
I

(∂Θ log ρbath)
ρT

= ρbath

〈[
F ·∇P + 1

m
P ·∇R + Γ∂L + 1

I
L∂Θ

] (∫ +∞

0
dse 1

h
Lbaths

)

×
[
δFbath ·∇P + 1

m
P · (∇R log ρbath) + δΓbath∂L + 1

I
(∂Θ log ρbath)

]〉
b

ρT

(E.32)

Let us look at some terms to have an idea of how the calculation proceeds. We get
diffusion terms of the form∫ +∞

0
ds
〈
(F ·∇P) e 1

h
Lbaths (δFbath ·∇P)

〉
b

= ∇P ·
∫ +∞

0
ds
〈(
e

1
h

L†
bathsF

)
⊗ δFb

〉
b
·∇P

= ∇P ·
∫ +∞

0
ds ⟨δFb(s)⊗ δFb(0)⟩b ·∇P

≡∇P · λPP (Θ) ·∇P

(E.33)

with L†
bath the operator adjoint to Lbath, and friction terms of the form∫ +∞

0
ds
〈
(F ·∇P) e 1

h
LbathsP · [∇R log ρbath]

〉
b

= ∇P ·
∫ +∞

0
ds ⟨δFb(s)⊗ [∇R log ρbath]⟩b ·

1
m

P

≡ 1
m
∇P · ζPP (Θ) ·P

(E.34)

where the force-force correlation matrix λPP (Θ) and the momentum friction matrix
ζPP (Θ) are the ones appearing in Eq. (3) of the main text. Note that friction and
diffusion terms coupling the orientational and translational degrees of freedom are also
admitted. Terms involving ∇R, ∂Θ on the left side of the average in Eq. (E.32) vanish.
For example

L

I

∫ +∞

0
ds
〈
∂Θe

1
h

Lbaths
1
m

P · [∇R log ρbath]
〉

b
= L

Im
P · ∂Θ ⟨[∇R log ρbath]⟩b = 0. (E.35)
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Plugging Eq. (E.31) - (E.32) into Eq. (E.27) we finally obtain

∂tρT(R,P,Θ, L) =
−

[
m−1P
I−1L

]
·
[
∇R

∂Θ

]
−
[
⟨Fbath⟩b
⟨Γbath⟩b

]
·
[
∇P

∂L

]

+
[
∇P

∂L

]
ζ(Θ)

[
m−1P
I−1L

]
+
[
∇P

∂L

]
λ(Θ)

[
∇P

∂L

]ρT(R,P,Θ, L)
(E.36)

Where the friction and noise matrices ζ(Θ), λ(Θ) are given by Eq. (E.5) and Eq. (E.6).
Eq. (E.36) describes the effective evolution of the probability distribution of the tracer
once the bath degrees of freedom have been integrated out within an adiabatic approx-
imation. The stochastic process associated to this equation is given by Eq. (E.3). This
concludes our derivation for the dynamics of a passive tracer in an active chiral bath.

Extensions of the results presented here shall focus on numerical and analytical
investigations of what happens beyond the adiabatic regime, when the timescale of
motion of the tracer is comparable to the one of the bath [111]. Out of the adiabatic
regime, the bath time correlation function could develop power law decays and lead
to superdiffusion, as observed in [118]. How this form of superdiffusion couples to odd
transport is an open question. Further development could also proceed toward under-
standing how chiral active bath mediate the interactions between multiple tracers, as
done in [117] for the achiral case. In the latter case, we expect nonreciprocal interac-
tions, akin to transverse forces, to arise from the chiral active bath. From there, there
would be hope to understand in a bottom-top approach the cluster dynamics observed
in assemblies of passive colloids immersed in chiral baths [179].
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The irreducible memory kernel

In this appendix we justify the choice for the irreducible memory kernel made in
Eq. (6.58). We first review how the irreducible memory kernel is introduced in the
equilibrium case, when γ = 0. Following Kawasaki [152], the starting point is the
observation that the evolution operator Ω ≡ D0

∑
i∇i [βFi + ∇i] can be mapped to a

Hermitian operator H ≡ e βH
2 Ω e −βH

2 . It can be written in a manifestly Hermitian
form as

H = −
∑
i

U†
i ·Ui, (F.1)

with Ui ≡
√
D0

[
−∇i + β

2 Fi
]
. Going back to the non-Hermitian representation we see

that
Ω = −

∑
i

e
−βH

2 U†
i e

βH
2 · e

−βH
2 Ui e

βH
2 ≡ −

∑
i

O×
i ·Oi, (F.2)

with

O×
i =

√
D0∇i,

Oi =
√
D0 [−∇i + βFi] .

(F.3)

At this point, one can insert any generic projection operator Pi and its orthogonal
counterpart Qi ≡ I − Pi. For consistency with the notation of the main text, we also
enclose Ω between the orthogonal projector Q = I − P , defined from Eq. (6.48):

QΩQ = −Q
(∑

i

O×
i Pi ·Oi −

∑
i

O×
i Qi ·Oi

)
Q

≡ −δΩ + Ωirr.

(F.4)

What remains to do is to properly choose the projection operator P , in such a way
that a renormalization of the memory kernel occurs: M̃(q, z) = M(q,z)

1+cM(q,z) , with c some
q-dependent constant. Following Cichocki and Hess [64] we take

Pi ≡ . . . e −iq·ri⟩⟨ e iq·ri . . . , (F.5)
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leading to the following expression for δΩ

δΩ = D0β
2

N
. . .Qf(q)⟩ · ⟨f∗(q)Q . . . (F.6)

Note that this is different from the choice of Kawasaki, which is instead

PKawasaki
j = . . .Oj e −iq·rj⟩ 1

D0q2 ⟨ e iq·rj O×
j . . . (F.7)

which leads to, using the fact that particles are equivalent,

δΩKawasaki = . . .Ωn(q)⟩ 1
⟨n∗(q)Ωn(q)⟩⟨n

∗(q)Ω . . .

= D0β
2

N
. . .Qf∥(q)⟩⟨f ∗

∥ (q)Q . . .
(F.8)

We see that in equilibrium, the operator δΩKawasaki contains only contributions from
the longitudinal currents.

We now turn to the general situation with γ ̸= 0. In this case one can see that an
analogous decomposition for Ωγ can be made, with an extra term to take into account
the presence of transverse forces:

Ω−γ = −O× · (1− γA) ·O. (F.9)

Using the projection operator Pi defined in Eq. (F.5) we obtain

Ωirr
−γ = QO×Qi · (1− γA) ·O

= D0Q
∑
j

∇jQj · (1− γA) [−βFj + ∇j]Q, (F.10)

which is Eq. (6.58) shown in the main text.
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Appendix G

Glassy bidisperse fluids in large
dimensions

This Appendix addresses the development of a dynamical mean field theory for bidis-
perse fluids in the large dimensional limit. The motivation behind this work is twofold.
First we desire to set a stepping stone toward the development of a dynamical mean field
theory for the Swap algorithm, discussed in Chapter 7, which by construction, requires
at least two different species of particles. The dynamics of bidisperse mixture in large
dimensions without particle diameters swaps thus constitutes the benchmark against
which the swap dynamics needs to be compared. At the moment, bidisperse mixtures
in the large dimensional limit have been studied from a thermodynamics viewpoint
through an ansatz in the static calculation [137, 1], and the situation is analogous for
the Swap dynamics [138]. Second, the study of the dynamics of polydisperse mixture
is interesting per se, as it would bring an interesting, mean field companion to recent
finite-dimensional studies on polydisperse systems that resort to the mode-coupling
approximation schemes [170].

We consider a binary mixture of NA large particles of type A and NB small par-
ticles of type B evolving under an equilibrium overdamped Langevin dynamics in d

dimensions,
ζṘµ

i (t) = Fµi +
√

2ζTξµi (t), (G.1)

where i is the particle label and µ denotes its species, µ = A,B. The noise ξµi (t) is
Gaussian with correlations

〈
ξµi (t)⊗ ξuj (t′)

〉
= 1δ(t − t′)δµνδij. The particles interact

through a pairwise potential, Fµi = −∑ν=A,B
∑
j Fµνij (t), with Fµνij ≡ −∇ivµν(|Rµ

i (t) −
Rν
j (t)|), where vµν(r) = v( r

ℓµν
), and ℓµν ≡ ℓµ+ℓν

2 , is the effective interaction diameter of
the two species.

Each species has a packing fraction φµ ≡ ρµVdℓ
d
µ/2d, with ρµ ≡ Nµ

V
the number

density of the species. To control the concentration fraction of small particles we intro-
duce the parameter x ≡ φB

φA+φB
. Following [137], in order to have a well defined packing
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fraction ratio for the two species, we choose the following scaling for the diameter ratio
of particles of species A and B:

ℓA
ℓB
≡ 1 + δ

d
(G.2)

with δ a parameter controlling the size ratio, which remains of ordere O(1) in d.

We now address the dynamics of this bidisperse mixture.

G1 One-particle process

The starting point is the one-particle process for particles of species µ = A,B. As for
the monodisperse case [177] we write Rµ

i (t) = Rµ
i (0) + uµi (t). The one-particle process

can then be derived following the same procedure described in Chapter 5, disregarding
the presence of transverse forces, which thus reduces to the equilibrium derivation for
monodisperse system. The main difference is that the memory kernel involved in the
generalized Langevin equation now contains contributions from force-force correlations
between particles of the same species and particles of different species. Within a given
species, all particles are equivalent, and we can thus drop the index i. The one-particle
process for the displacement uµ of particle of species µ –note that we moved the species
index downward– is therefore

ζu̇µ(t) = −β
∫ t

0
dτMµ(t− τ)u̇µ(τ) + Ξµ(t)

⟨Ξµ(t)⊗Ξν(t′)⟩ = 1δµν [2Tζδ(t− t′) +Mµ(t− t′)] .
(G.3)

The colored Gaussian noise Ξµ(t) has zero mean. Note that the noise affecting particles
of one species is independent from the noise affecting a particle of another species, as
the force affecting two different particles are statistically independent. The memory
kernel Mµ(t) contains the force-force correlation among a particle of species µ and all
the other species

Mµ(t) = 1
dNµ

∑
i,j

〈
Fµµij (t) · Fµµij (0)

〉
+
∑
ij

〈
Fµµij (t) · Fµµi,j (0)

〉 (G.4)

with µ denoting the species complementary to species µ, e.g. A = B. In the spirit of the
dynamical mean field theory, the memory kernel Mµ are self-consistently determined
from the knowledge of three independent two-body processes, involving the distance
rµν(t) ≡ Rµ(0) − Rν(0) + uµ(t) − uν(t) between two interacting particles belonging
respectively to species µ and ν. The two-body process is considered in the next Section.
Here we address the form taken by Mµ in the large dimensional limit. To this purpose,
we introduce the rescaled particle overlap hµν(t)

hµν(t) ≡ d

(
|rµν(t)|
ℓµν

− 1
)
. (G.5)
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Glassy bidisperse fluids in large dimensions

and a rescaled interaction potential v(h)

v(h) ≡ v(r). (G.6)

In the large dimensional limit, the two memory kernels MA(t) and MB(t) become

MA(t) ≡ ℓ2
A

2d2MA(t) = φ̂

2

(1− x)
∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h(t))⟩AAh0

+ x e δ
2

∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h(t))⟩ABh0


MB(t) ≡ ℓ2

B

2d2MB(t) = φ̂

2

x ∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h(t))⟩BBh0

+ (1− x) e − δ
2

∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h(t))⟩ABh0

.

(G.7)

where φ̂µ ≡ 2ddφµ is a rescaled packing fraction, and ⟨. . .⟩µνh0
denotes an average over the

dynamics of the displacement between two interacting particle belonging respectively
to the species µ and ν, given that the initial interparticle distance is h0.

To give an idea of the computation, we illustrate how one can pass from Eq. (G.4)
to Eq. (G.7), focusing on the correlator for the forces that particles B exert on a
particle of species A. Owing to the large dimensional limit, the initial interparticle
separation is entirely encoded in the radial distribution function gµν(r) = e −βvµν(r)

or in its expression in terms of hµν g(hµν) ≡ gµν(r). We thus have, using the limit
d→ +∞,

1
dNA

∑
i∈A,j∈B

⟨Fi,j(t) · Fi,j(0)⟩ = ρAρB
dNA

∫
dxdygAB(x− y) ⟨v′

AB(x(t)− y(t))⟩ABx−y v
′
AB(x− y)

= ρB
d

∫
dr0gAB(r0)v′

AB(r0) ⟨v′
AB(r(t))⟩ABr0

= ρBSd
d

∫ +∞

0
dr0r

d−1
0 gAB(r0)v′

AB(r0) ⟨v′
AB(r(t))⟩ABr0

= ρBSd

(
ℓA + ℓB

2

)d ∫ +∞

−∞
dh0 e h0g(h0)v′(h0) ⟨v′(h(t))⟩ABh0

= ρBSdℓ
d
B

(
1 + δ

2d

)d ∫ +∞

−∞
dh0 e h0g(h0)v′(h0) ⟨v′(h(t))⟩ABh0

= d2

ℓ2
A

φ̂B e δ
2

∫ +∞

−∞
dh0 e h0g(h0)v′(h0) ⟨v′(h(t))⟩ABh0

= d2

ℓ2
A

φ̂x e δ
2

∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h(t))⟩ABh0

,

(G.8)
with Sd ≡ dVd the surface of a unit sphere in d dimensions. The final line of Eq. (G.8)
is precisely the term appearing the second line of Eq. (G.7). The other terms can be
computed in a similar manner.
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We not turn to the determination of the two-body processes necessary to close the
dynamical mean field equations.

G2 Two-body process

The two-body processes involving the same species can be determined by directly taking
the time derivative of rµµ while sorting out from the memory kernel the two-body force
between the two particles:

ζ

2 ṙµµ = −∇vµµ(rµµ)− β

2

∫ t

0
dτMµ(t− τ)ṙµµ(τ) + Ξµµ(t)

⟨Ξµµ(t)⊗Ξνν(t′)⟩ = δµν1
[
Tζδ(t− t′) + 1

2Mµ(t− t′)
] (G.9)

The determination of the equation of motion for the distance rAB between particles of
different species proceeds in a slightly different manner. We first consider the equations
of motion for the single particle displacement uA, uB separately, while keeping outside
of the memory kernel the interaction between the two specific particles A and B:

ζu̇A = −∇v(rAB)− β
∫ t

0
dτMA(t− τ)u̇A + ΞA(t)

ζu̇B = ∇v(rAB)− β
∫ t

0
dτMB(t− τ)u̇B + ΞB(t)

(G.10)

We introduce the Laplace transform ũ(s) ≡
∫+∞

0 e −stu(s)dt and write

K̃A(s) [sũA − uA(0)] = −∇ṽ(s) + Ξ̃A(s)
K̃B(s) [sũB − uB(0)] = ∇ṽ(s) + Ξ̃B(s)

(G.11)

with

K̃µ(s) = 2Tζ + M̃µ(s)〈
Ξ̃µ(s)⊗ Ξ̃ν(s′)

〉
= 1δµν

K̃µ(s) + K̃µ(s′)
s+ s′

(G.12)

We can multiply the first and the second line of Eq. (G.11) by K̃B(s) and K̃A(s)
respectively, subtracting the second from the first, and dividing both terms by K̃A(s)+
K̃B(s). We finally obtain

K̃AB(s) [sr̃AB(s)− rAB(0)] = −∇ṽ(s) + Ξ̃AB(s) (G.13)

with Ξ̃AB(s) a Gaussian colored noise with zero mean, and

K̃AB(s) ≡ K̃A(s)K̃B(s)
K̃A(s) + K̃B(s)〈

Ξ̃AB(s)⊗ Ξ̃AB(s′)
〉

= 1
K̃AB(s) + K̃AB(s′)

s+ s′

(G.14)
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Glassy bidisperse fluids in large dimensions

the two-body process between species A and B is therefore an equilibrium process
with a memory kernel given by the geometric mean of the kernels governing the single-
particle dynamics of each species. We have thus self-consistently closed the dynamical
mean field equation. In the next Section, we study the long time limit of the memory
kernels.

G3 Long time plateau of the memory kernel

The memory kernel K̃(s), can be separated into two contribution:

lim
s→0

K̃AB,f (s) ≡ lim
s→0

K̃AB,f (s) + MAB,∞

s
. (G.15)

K̃AB,f (s → 0) < +∞ is a regular term in the zero frequency limit, while the second
term diverges when MAB,∞ is different from 0. An analogous decomposition can be
done for the memory kernels MA and MB:

M̃A(s→ 0) ≡Mµ,f (s→ 0) + Mµ,∞

s
. (G.16)

The plateau value MAB,∞ is related to Mµ,∞. This can be explicitly seen by computing
its singular part

K̃AB(s) =

(
Tζ +MA,f (s) + MA,∞

s

) (
Tζ +MB,f (s) + MA,∞

s

)
2Tζ +MA,f (s) +MB,f (s) + MA,∞+MB,∞

s

= K̃AB,f (s) + MA,∞MB,∞

s (MA,∞ +MB,∞)

(G.17)

from which we read
MAB,∞ = MA,∞MB,∞

MA,∞ +MB,∞
. (G.18)

The plateau value of the memory kernel for the inter-species process is related, through
a geometric mean by the ones of the processes between particles of the same species.

We thus see that there can be three distinct dynamical regimes:

• MA,∞ = 0 and MB,∞ = 0, which implies MAB,∞ = 0, corresponding to the ergodic
phase.

• Mµ,∞ ̸= 0 and Mµ,∞ = 0, which implies MAB,∞ = 0. This correspond to a single
glass phase found in [137], where only the particles of one species are arrested.

• MA,∞ ̸= 0 and MB,∞ ̸= 0, which implies MAB,∞ ̸= 0. In this double-glass
phase [137], particles of both species are arrested.
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The temperature below which Mµ,∞ ̸= 0 is determined using the same approach de-
scribed in Chapter 5.5.1. The self-consistent equations read

MA,∞ = φ̂

2

(1− x)
∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h)⟩AAh0

+ x e δ
2

∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h)⟩ABh0


MB,∞ = φ̂

2

x ∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h)⟩BBh0

+ (1− x) e − δ
2

∫ +∞

−∞
dh0 e h0−βv(h0)v′(h0) ⟨v′(h)⟩ABh0

.
⟨v′(h)⟩µµh0

= 1
(πMµ,∞)1/2

∫
dΞµ,∞ e −

Ξ2
µ,∞

Mµ,∞

∫
dhpB(h, |Mµ,∞,Ξµ,∞, h0)v′(h)

⟨v′(h)⟩ABh0
= 1

(πMAB,∞)1/2

∫
dΞAB,∞ e −

Ξ2
AB

MAB,∞

∫
dhpB(h, |MAB,∞,ΞAB,∞, h0)v′(h)

(G.19)
with pB(h, |M∞,Ξ∞, h0) the steady state distribution for the two-body gap h, given
a fixed plateau value of the memory kernel M∞, long time noise realisation Ξ∞ and
initial condition h0:

pB(h, |M∞,Ξ∞, h0) ≡
e −βw(h|M∞,Ξ∞,h0)∫

dh′ e −βw(h′|M∞,Ξ∞,h0)

w(h|M∞,Ξ∞, h0) ≡
1
4M∞(h− h0)2 − Ξ∞h.

(G.20)

Eq. (G.19) allows, in principle to determine the location of the dynamical glass
transition in bidisperse fluids in large dimensions. In the next section, we make a
connection with the static result presented in [137] by means of a Gaussian ansatz.

G4 Connection with Ikeda et al. [137]

The equations for the memory kernels MA,∞,MB,∞ can be turned into equations for
the plateau value of the mean squared displacement of particles of species µ, ∆µ ≡
limt →∞ d

ℓ2µ
⟨u2

µ(t)⟩, performing a calculation analogous to the one of Section 5.7:

∆µ = 1
β2Mµ,∞

∆AB ≡
∆A + ∆B

2

(G.21)

In the ergodic phase particles diffuse at long times and ∆µ +∞. When dynamical
arrest occurs for particles of species µ, then we have ∆µ has a finite value, which has
the physical meaning of the size of the cage in which particles are trapped.
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Glassy bidisperse fluids in large dimensions

The equations for the plateaus then read, once they are expressed in terms of ∆µ

1
∆A

= φ̂

(1− x)
∫ +∞

−∞
dh e h log q∆A

(h) ∂

∂∆A

q∆A
(h)

+ x e δ
2

∫ +∞

−∞
dh e h log q∆AB

(h) ∂

∂∆AB

q∆AB
(h)


1

∆B

= φ̂
[
x
∫ +∞

−∞
dh e h log q∆B

(h) ∂

∂∆B

q∆B
(h)

+ (1− x) e − δ
2

∫ +∞

−∞
dh e h log q∆AB

(h) ∂

∂∆AB

q∆AB
(h)



(G.22)

with
q∆(h) ≡

∫ dz√
2π∆

e −βv(h+∆/2+z) e − z2
2∆ . (G.23)

In the case of a hard sphere potential, when v(h) = +∞ if h ≤ 0 and 0 otherwise,
q∆(h) reduces to

q∆(h) = 1
2

[
1 + erf

(
h+ ∆/2√

2∆

)]
(G.24)

and we the equations of Ikedaet al. [137]. The iterative solution of Eq. (G.22) shows
that, for opportunely chosen values of the size ratio difference δ and the relative con-
centration x one can obtain, by varying φ̂ a transition from a liquid phase to a single
glass phase, where only particle of type A are arrested, to a double glass phase where
both particle of type A and B are frozen. In Fig. G.1, we show the resulting dynamical
phase diagram reproducing the results in [137].

G5 Generalization to multi-component mixtures

We present an immediate generalization of Eq. (G.22) for the case of polydisperse
mixture with a discrete number m of families µ = A,B,C, . . .. Each family has a
typical interaction diameter ℓµ, which scales in the large dimensional limit as

ℓµ
ℓmin

= 1 + δµ
d

(G.25)

with ℓmin ≡ minµ ℓµ the minimal diameter among the different species, which implies
that δµ ≥ 0. We introduce then m volume fractions xµ ≡ φµ∑

ν
φν

, which satisfy the
condition ∑ν xν = 1. Eq. (G.22) then generalizes to

1
∆µ

= φ̂
∑
ν

xν e
δµ−δν

2

∫ +∞

−∞
dh e h log q∆µ(h) ∂

∂∆µν

q∆µν (h). (G.26)

with ∆µν ≡ ∆µ+∆ν

2 . Based on the double glass transition observed in the bidisperse
case, it is then reasonable to expect multiple glass transitions o arise in the presence of
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Figure G.1: Dynamical phase diagram of the bidisperse fluid for δ = 3.0. φ̂mono
d ≈

4.8067 is the critical packing fraction for the glass transition of monodisperse hard
spheres. Violet points: fully ergodic phase (∆µ = +∞ for µ = A,B); Green points:
single glass phase (∆A < +∞, ∆B =∞) with particles of type A dynamical arrested;
yellow points: double glass phase (∆A < +∞, ∆B =∞) with both particles of type A
and B dynamically frozen. This is image reproduces results reported in [137]

many families of particles, if their distribution is carefully chosen. We solved Eq. (G.26)
in the case of m = 3, choosing the following hierarchical distribution for the volume
fractions

φ̂A = φ̂

1 + x+ x2

φ̂B = xφ̂A

φ̂C = xφ̂B

(G.27)

with particles of type C the one with the smallest diameter. The results are shown
in Fig G.2. By varying φ̂ and the control parameter x, multiple glass transitions are
observed, as we pass from an ergodic liquid to a single, double and triple glass where
particle undergo dynamical arrest consecutively upon varying the total density, starting
from the largest ones.

In this Appendix, we have presented some ongoing work on the dynamics of bidis-
perse, and polydisperse liquids in the large dimensional limit. Natural directions of
development of this work are a more complete investigation of which discrete distribu-
tions of the polydispersity give rise to multiple glass transitions and which distributions
do not. Further insights into the dynamics of the particles in the ergodic case could
be obtained by means of numerical integration [185], and shed light on the nature, in
mean field, of the different relaxation channels exploited by particles of different sizes.
For continuously polydisperse mixture it has been shown in a recent work [1], by means
of static calculations, that both in the case of exponential and nearly monodisperse dis-
tributions there exists a regime where only particles above a threshold size vitrify, with
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Figure G.2: Dynamical phase diagram of a ternary mixture in infinite dimensions for
δA = 6.0, δB = 3.0 and δC = 0.

a critical behavior of the cage size for particle with a size close to the threshold. How
does the dynamics of the particles look like in this regime is an intriguing question,
that could be addressed through the approach illustrated here.
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Appendix H

Does swap in large dimensions work?

This Appendix contains some theoretical considerations on the behavior of the Swap
algorithm in the high dimensional limit. The Swap algorithm, and its collective ver-
sion presented in Chapter 7, achieve in continuously polydisperse supercooled liquids a
speedup of many orders of magnitude with respect to the ordinary Metropolis dynam-
ics. Beyond its practical applications, the acceleration provided by Swap has sprouted
many theoretical reflections [258, 29] concerning the interplay between static and dy-
namic properties of supercooled liquids. Our understanding of how the swap algorithm
bypass the sluggishness of supercooled liquids is incomplete. A static ansatz in the high
dimensional limit, based on the replica method [138], a mode-coupling approach [245,
246] and extrapolation to the large dimensional limit of numerical simulations [31] sug-
gest that the Swap algorithm shifts the dynamical ergodicity breaking temperature.
During my thesis, I attempted to build a dynamical mean field theory of the Swap
dynamics for liquids in large dimensions. However, while doing so, it became appar-
ent that the Swap dynamics in the large dimensional limit either reduces to normal
dynamics, or samples a different glassy state from the one obtained without particle
swaps.

H1 Swap dynamics with continuous diameter distribution

We consider a continuously polydisperse liquid of interacting particles in d dimensions,
and compare two types of equilibrium dynamics. The first one is the usual overdamped
Langevin dynamics

ζ ṙi = −∂Hσ(rN)
∂ri

+
√

2ζTξi(t)

= −
∑
j ̸=i

∂ri
v(|ri − rj|, σi, σj) +

√
2ζTξi(t)

(H.1)
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where ξi(t) is a Gaussian white noise with correlations ⟨ξi(t) ⊗ ξj(t′)⟩ = δij1δ(t − t′),
ζ the friction coefficient, σi is the diameter of particle i, and v(r, σ, σ′) is an isotropic
pairwise interaction potential that depends on the diameters σ, σ′ of the interacting
particles, as well as on their distance r. The Hamiltonian Hσ(rN) = ∑

i<j v(rij, σi, σj)
is the energy of the system given a configurations of diameters σN , which are quenched
variables in the usual dynamics.

The second dynamics is a continuous version of the Swap dynamics, whose formu-
lation in the underdamped case was proposed in [34]. Now the diameters are annealed
variables, allowed to evolve under the action of an external potential ∑iw(σi). The
Hamiltonian of the system H(rN , σN) is

H(rN , σN) ≡
∑
i<j

v(rij, σi, σj) +
∑
i

w(σi) = Hσ(rN) +
∑
i

w(σi) (H.2)

and the corresponding Swap overdamped Langevin dynamics is

ζ ṙi = −
∑
j ̸=i

∂ri
v(|ri − rj|, σi, σj) +

√
2ζTξi(t)

ζswσ̇i = −
∑
j ̸=i

∂σi
v(|ri − rj|, σi, σj)− ∂σi

w(σi) +
√

2Tζswχ(t)
(H.3)

with the Gaussian white noise χ(t) has zero mean and correlations ⟨χi(t)χj(t′)⟩ =
δijδ(t− t′). The ratio ζ/ζsw sets the relative timescale of motion of the diameters with
respect to the translational degrees of freedom.

H1.1 Determination of w: annealed and quenched averages

The external potential w(σ) is determined by matching the value of equilibrium ob-
servables in the two systems, as we now show. Let O(rN , σN) be a generic observable
that depends both on the position and diameters of the liquid. Using the dynamics
with quenched diameters given by Eq. (H.1), the equilibrium value of O(rN , σN) is
given by the quenched average ⟨. . .⟩σ, where the realization of the diameter is fixed.

⟨O(rN , σN)⟩σ = 1
Zσ

∫
dNr e −βHσ(rN )O(rN , σN), (H.4)

where the partition function Zσ is

Zσ ≡
∫

drN e −βHσ(rN ). (H.5)

On the other hand, the annealed average ⟨. . .⟩, obtained by letting the particles’ posi-
tions and diameters evolve through Eq. (H.3) is

⟨O(rN , σN)⟩ ≡ 1
Z

∫
drNdσN e −βH(rN ,σN )O(rN , σN) (H.6)
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with the new annealed partition function Z,

Z ≡
∫

drNdσN e −βH(rN ,σN ). (H.7)

We now impose the quenched average, after averaging over all the realizations of the
diameter distribution π(σN), to match the annealed average:

⟨O(rN , σN)⟩ =
∫

dσNπ(σN)⟨O(rN , σN)⟩σ

=
∫

dσNπ(σN) 1
Zσ

∫
dNr e −βHσ(rN )O(rN , σN)

(H.8)

Using the definition of quenched and annealed average, Eq. (H.8) leads to the condition

π(σN) = Zσ
Z

e −β
∑

i
w(σi) (H.9)

Eq. (H.9) establishes a relation between the potential w and the diameter distribution
π. The partition function Zσ involves many-body interactions between the diameters,
while the exponential on the right hand side of Eq. (H.9) factorizes into a product
of single body terms. This means, interestingly, that for Eq. (H.9) to be valid the
distribution π(σN) must involve high order correlations among the diameter of the
particles. Conversely if this were not the case, we would need to replace the one-body
potential ∑iw(σi) with a many-body one, which would lead to interactions among the
particle diameters.

H1.2 Infinite-dimensional limit

We now explore how to take the infinite dimensional limit of Eq. (H.3). Following
the criterion suggested by Ikeda et al. [137, 1], and adopted in App. G for bidisperse
mixtures, we introduce rescaled particle diameters si ≡ d

(
σi

σ0
− 1

)
, with σ0 a reference

diameter, and a rescaled interparticle distance hij ≡ d
(
rij

σ0
− 1

)
. We also introduce

rescaled potentials v(h, s, s′) ≡ v(r, σ, σ′) and w(s) ≡ w(σ). The first line of Eq. (H.3)
becomes

ζ ṙi = −d
∑
j ̸=i

r̂ij∂hij
v(hij, si, sj) +

√
2Tζξi(t) (H.10)

with r̂ij ≡ |ri−rj |
rij

. Here the different terms have the same scaling in d, as already
observed in Chapter 5: looking at component α = 1, . . . , d of Eq. (H.10), we have

ζ ṙi,α︸︷︷︸
O(d−1)

= −d
∑
j ̸=i︸︷︷︸

O(d1/2)
contribution from fluctuating terms

r̂ij,α︸︷︷︸
O(d−1/2)

v′(hij, si, sj) +
√

2Tζξα,i(t). (H.11)

The dynamical evolution unfolds over a time of order O(1) in d if we work with the
rescaled friction coefficient ζ̂ ≡ d−2ζ.
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For the dynamics of the diameters, we have

ζswd
−1σ0ṡi = − d

σ0

∑
j ̸=i︸︷︷︸

O(d1/2)

∂si
v(hij, si, sj)−

d

σ0
w′(si) +

√
2Tζswχi(t), (H.12)

or, after book-keeping the orders of d

ζswO(d−1) = O(d3/2) +O(d) +O(
√
ζsw). (H.13)

We have then two possibilities in choosing the scaling of ζsw, both leading to pathological
dynamics. The first one is ζsw = d2ζ̂sw, which represents an attempt at constraining the
dynamics of the diameters to unfold on the same timescale of the translational degrees
of freedom. However, in this case the first term on the right hand side of Eq. (H.12)
dominates, and we expect the diameter to instantaneously freeze around the minimum
of the potential ∑i<j v(h, s, s′). The second choice is ζsw = d5/2ζ̂sw, which makes the
ratio ζ̂

ζ̂sw
∼ O(d−1/2), implying that the diameters are frozen in the times over which the

dynamics of the translational degrees of freedom unfolds, and the annealed dynamics
Eq. (H.3) never takes place.

In the next section, we show that a similar freezing scenario is to be expected for the
case of a bidisperse mixture where the swap dynamics is implemented through jump
processes, without introducing correlation between the diameters, neither at the level
of the diameter distribution nor of the potential w.

H2 Swap rates in large dimensions

In this Section, we consider a binary mixture in large dimension. We consider N
particles in a volume V . Each particle i has a label µi identifying its species, µi =
µA, µB, and its corresponding diameter σµi

. The position of the particles Ri evolve
according to the usual overdamped Langevin dynamics

ζṘi = −
∑
j ̸=i

v(Rij, σi, σj) +
√

2Tζξi(t) (H.14)

with v(Rij, σi, σj) an interaction potential as described below Eq. (H.1). On top of the
evolution of translational degrees of freedom, a particle i is allowed to change from
species µi = A (B) to species µi = B (A) with rate ωi. These rates are tuned so that
the equilibrium distribution of the dynamics is the Boltzmann distribution

ρB ∝ exp
−β∑

i<j

v(Rij, σµi
, σµj

) + ∆µchem(NA −NB)
 (H.15)

The chemical potential difference ∆µchem is determined by fixing the average particle
number concentration

〈
NA

N

〉
≡ nA = 1 − nB, and it mimics the effects of a diameter
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reservoir in contact with the system. An example of rates that satisfy the detailed
balance condition and that lead to the Boltzmann distribution given by Eq. (H.15) are

ωi ≡
1
τsw

e − β
2

[∑
j ̸=i

v(Rij ,σµi
,σµj )−v(Rij ,σµi ,σµj )]+∆µchem(δµi,B−δµi,A)

]
. (H.16)

The argument of the exponential is half of the energy difference between the state
where particle i has changed species and the state where particle i has kept its initial
species. The time τsw fixes the typical time scale over which the particle change species

In the large dimensional limit, the rates ωi behave pathologically, as they either
grow or decay exponential in

√
d. To see this, we adopt rescaled variables for the

diameters sµi
≡ d

(
σµi

σ0
− 1

)
, and for the overlap Rij ≡ d

(
Rij

σ0
− 1

)
, with σ0 a reference

length scale of the system. Using the rescaled potential defined above Eq. (H.10) the
difference in the potential energy of interaction becomes
∑
j ̸=i

[
v(Rij, σµi

, σµj
)− v(Rij, σµi

, σµj
)
]

=
∑
j ̸=i

[
v(Rij, σµi

(
1 + sµi

− sµi

d

)
, σµj

)− v(Rij, σµi
, σµj

)
]

≈
∑
j ̸=i

sµi
− sµi

d
σµi

∂v(Rij, σµi
, σµj

)
∂σµi

= (sµi
− sµi

)
∑
j ̸=i

σ−1
0
∂v(hij, sµi

, sµj
)

∂sµi

+O(d−1/2)

∼ (sµi
− sµi

)×O(d1/2).
(H.17)

In the first line, we have used the fact that σµi

σµi
= 1 + sµi

−sµi

d
+O(d−2). The calculation

in Eq. (H.17) shows that the rates at which particles turn from one species to another
depend exponentially on

√
d, in stark contrast with the dynamics of the position of

the particles, which unfolds over a time O(1) in the space dimension. Moreover, if
we assume that the interaction potential is a monotonously increasing function of s,
∂sv(h, s, s′) > 0, then the sign in the last line of Eq. (H.17) is equal to the sign of
sµi
− sµi

. This implies that the rates at which small particles turn to large ones are
of order O( e −

√
d), which suggests that the swap dynamics is completely frozen in the

large dimensional limit. An example of a potential for which ∂sv(h, s, s′) > 0 is a power
law potential of the form

v(r, σ, σ′) ≡ ε

( 1
2 (σ + σ′)

r

)ad
(H.18)

with a > 0, and of order O(1) in the space dimension d. Using rescaled diameter and
distances, this potential becomes

v(r, σ, σ′) ≈ ε

(
1 + s+ s′

2d

)ad
×
(

1 + h

2d

)−ad

= ε e −ah+ a
2 (s+s′) ≡ v(h, s, s′),

(H.19)
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for which ∂sv(h, s, s′) > 0.

In this Appendix, we presented some arguments that suggest that the Swap dy-
namics becomes either trivial or singular in the large dimensional limit. The fact that
a similar feature might be observed also for the facilitated dynamics explored in Ap-
pendix A is intriguing, as both swap and –at least, in theory– the facilitated dynamics
are extremely effective in finite dimensional systems. Our considerations are somewhat
supported by the observation that Swap Monte Carlo loses its effectiveness as the space
dimension is increased in numerical simulations [31]. We speculate that the shift in
the mean field glass transition temperature found using approximated static calcula-
tions [138] implicitly relies on the assumption that the swap dynamics is capable, even
in the infinite dimensional limit, to explore metastable states of a different nature than
its counterpart without swaps. This assumption is put to the test by the preliminary
observation presented here.
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Additional result for cSwap

I1 A model with a different polydispersity

To show that the efficiency of the cSwap algorithm does not depend on the specific
polydispersity of the model studied in the main text, we study the relaxation dynamics
of a second model. It consists of N = 1024 hard disks with a diameter distribution
following a power law, π(σ) ∝ σ−3, with σmin ≤ σ ≤ σmax, as studied earlier [32].
We recall that the units of length are chosen so that σ = 1. We have chosen the
support of the diameter distribution such that the polydispersity is ∆ = 23%. We ran
NV T simulations using the six different algorithms studied in the main text at a large
packing fraction, ϕ = 0.86, where we measured the time decay of Cψ. The results are
shown in Fig. I.1. The hierarchy of speedups obtained by the different algorithm, and
their relative values, is comparable to the results reported in the main text for a similar
value of ϕ.

I2 Changing the length of the chain in ECMC

When using the ECMC algorithm, it is also possible to measure times using the number
of directed chains of particles that have moved [23]. When comparing ECMC with
other types of algorithms, however, this choice is a poor indicator of its efficiency, as
it hides the number of particles–and hence of event determinations–that are involved
in each chain. This is demonstrated in Fig. I.2(a), where the time relaxation of Cψ
is shown as a function the number of chain displaced during an ECMC in the NV T
ensemble, for different values of the chain length ℓ. When times are measured according
to the number of chains displaced, longer chains have a stronger impact on the system
relaxation. However, if one measures times in units of Ntmove, thus counting individual
particle displacements, we see that all the relaxation curves now collapse. This collapse
implies that the efficiency of ECMC (in CPU time) is nearly independent of ℓ.
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Figure I.1: Time dependence of the hexatic correlation function for a system of N =
1024 particles with a power law distribution of the diameters. Time is measured in units
of Ntmove, and the efficiency of the algorithms that involve swap moves is comparable
to the results shown in Fig. 2 of the main text near ϕ ≈ 0.85.
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Figure I.2: Equilibrium correlation function for the ECMC dynamics, using different
values of the chain length ℓ. Time is measured in units of (a) the number of chains
displaced, and (b) Ntmove.

226



Additional result for cSwap

100 101 102 103 104 105 106 107

t/Ntmove

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ψ
(t

)
φ = 0.853

N= 1024

2048

4096

Swap

SwapECMC

cSwap

cSwapECMC

Figure I.3: Time dependence of the hexatic correlation function for systems of different
sizes using the Swap, SwapECMC, cSwap and cSwapECMC algorithms in the NVT
ensemble.

I3 Efficiency of the algorithms as a function of system size

In this section we address the question of how the gain provided by SwapECMC, cSwap
and cSwapECMC behaves with the size of the system. We study the relaxation dy-
namics for polydisperse systems of N = 1024, 2048, and 4096 hard disks, with the
polydispersity defined as in Sec. I1. To avoid uncontrolled fluctuations in the distribu-
tion of the diameters and make a clear comparison between different system sizes, we
generate the diameters {σi}i=1,...,N in each system of N particles in the following way:
we first take N numbers ai = i/N with a uniform spacing in the interval [0, 1]. From
each number ai, the diameter σi is generated using the following relation

σi = σmax√
1− ai + ai

(
σmax
σmin

)2
, (I.1)

which maps a random number generated from the uniform distribution in the interval
[0, 1] to a random number generated from a power law distribution ∝ σ−3 between σmin

and σmax.

We run NVT simulations using the Swap, SwapECMC, cSwap, cSwapECMC algo-
rithms for the three system sizes at a high packing fraction ϕ = 0.853, and we track
the decay of the correlation function Cψ(t). The resulting curves, displayed in Fig I.3,
demonstrate that the gain provided by the different algorithms is constant with respect
to the size of the system. This is in line with previous results regarding swap efficiency
in glass-formers.
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